Contributions to geometric inference for manifolds and to the statistical study of persistence diagrams

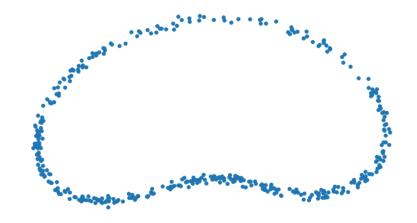
PhD Defense - August 30 2021

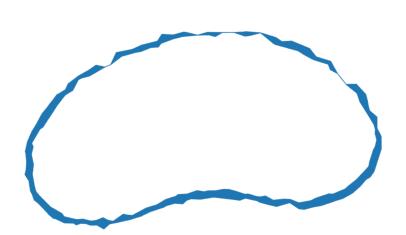
Vincent Divol

vincent.divol@nyu.edu

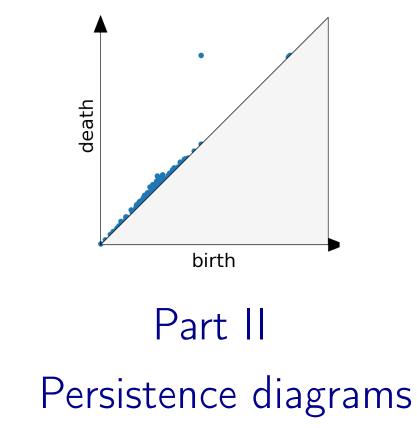
vincentdivol.github.io

DataShape Inria Saclay / Laboratoire Mathématique d'Orsay

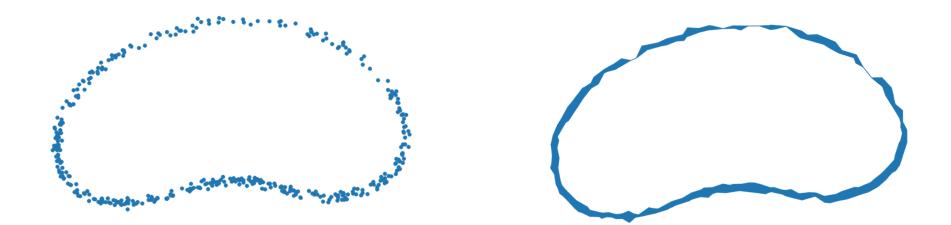




Part I Manifold inference



Part I Manifold inference



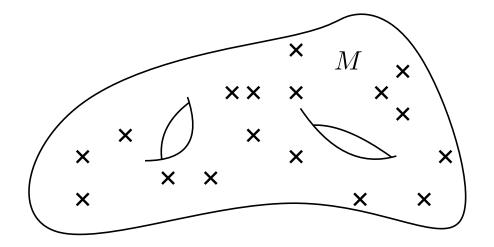
The manifold assumption

 $\begin{aligned} \mathcal{X}_n &= \{X_1, \dots, X_n\} = \text{set of } n \text{ random observations} \\ \text{in } \mathbb{R}^D \\ n \ll D \end{aligned}$

Key assumption:

There is a low dimensional structure underlying the observations \mathcal{X}_n .

 $\longrightarrow \mathcal{X}_n$ lies close to a manifold M.



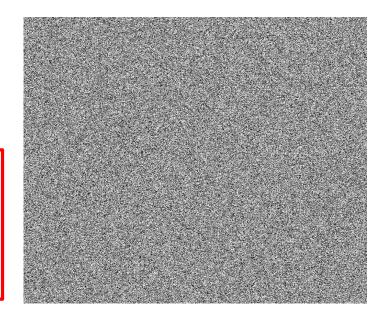
Goal: propose a reconstruction \hat{M} that is close to M for the Hausdorff distance d_H

The manifold assumption

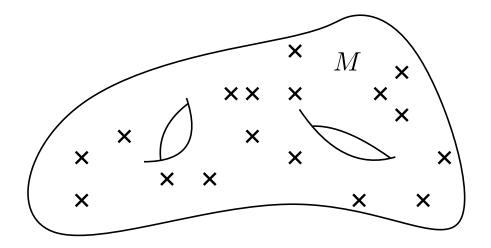
 $\begin{aligned} \mathcal{X}_n &= \{X_1, \dots, X_n\} = \text{set of } n \text{ random observations} \\ \text{in } \mathbb{R}^D \\ n \ll D \end{aligned}$

Key assumption:

There is a low dimensional structure underlying the observations \mathcal{X}_n .

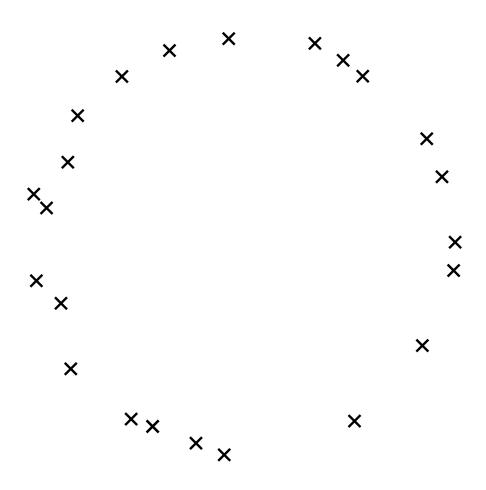


 $\longrightarrow \mathcal{X}_n$ lies close to a manifold M.

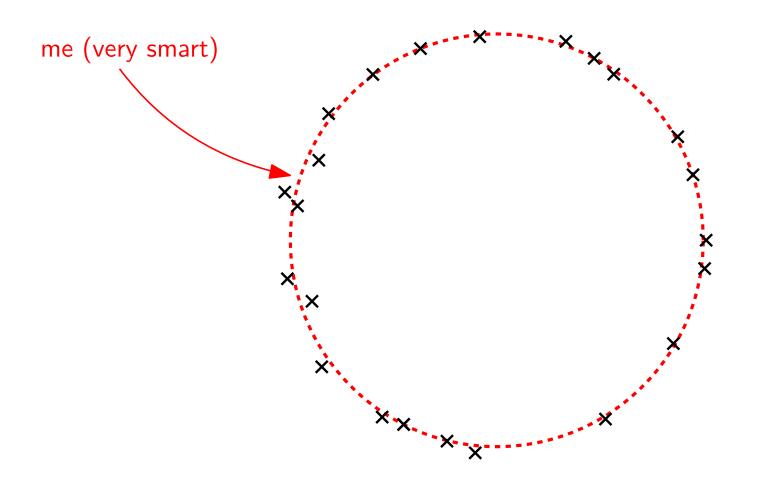


Goal: propose a reconstruction \hat{M} that is close to M for the Hausdorff distance d_H

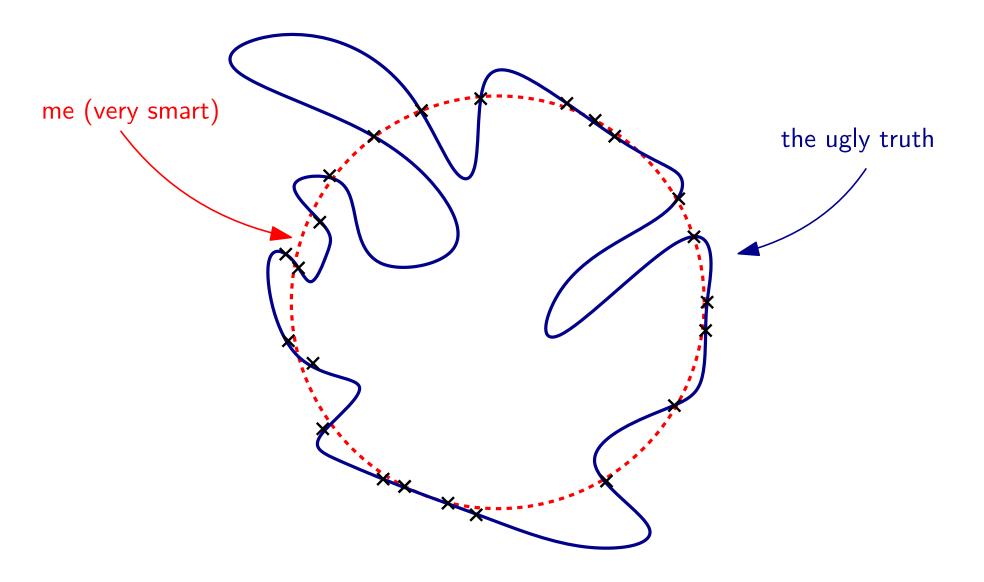
Find the curve fitting the points!



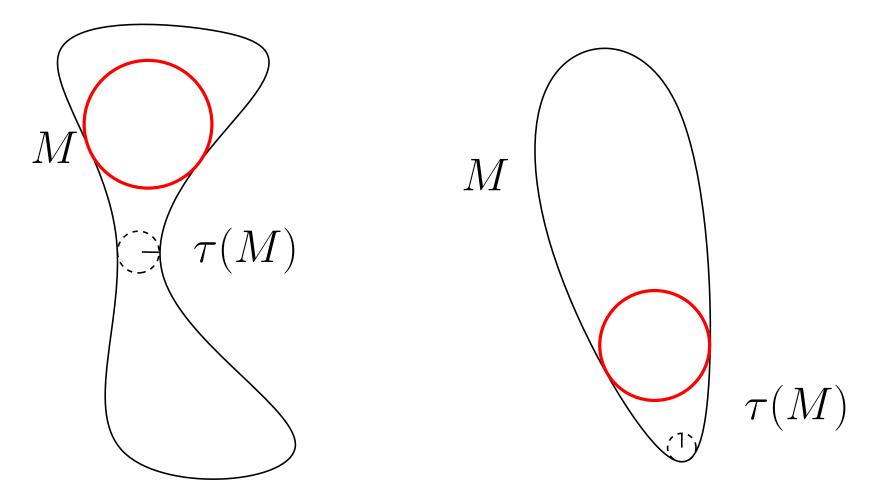
Find the curve fitting the points!



Find the curve fitting the points!



The **reach** of M is the radius of the largest ball one can make roll freely around M without bumping into it. [Federer '59]



controls the size of the minimal bottleneck

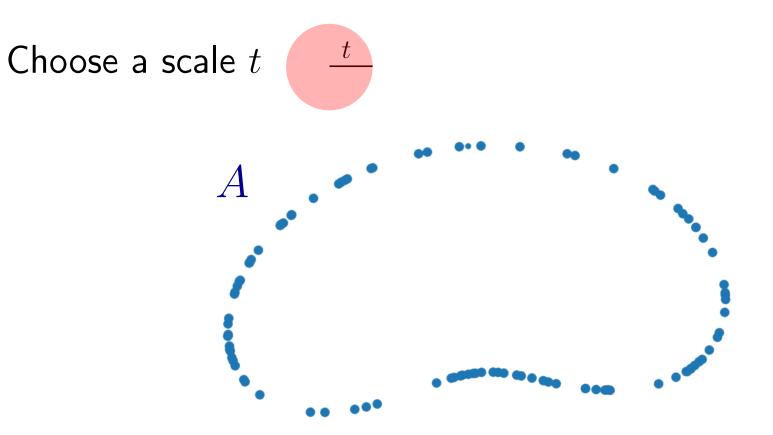
controls the curvature radius

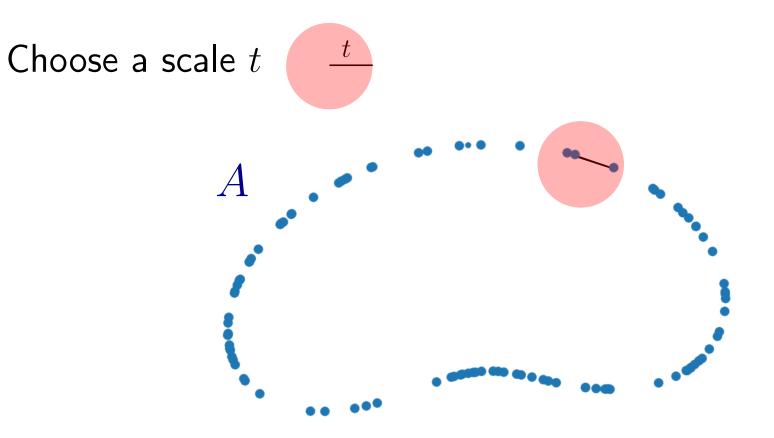
Definition: $\mathcal{P}^d_{\tau_{\min}, f_{\min}, f_{\max}}$ is the set of distributions μ supported on a *d*-dimensional manifold *M* with reach $\tau(M) \geq \tau_{\min}$ and density *f* satisfying $\forall x \in M, \quad 0 < f_{\min} \leq f(x) \leq f_{\max} < \infty.$

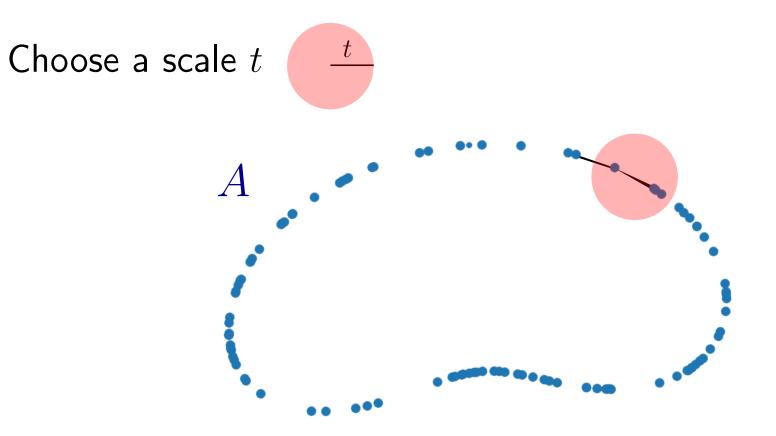
[Genovese & al. '12]

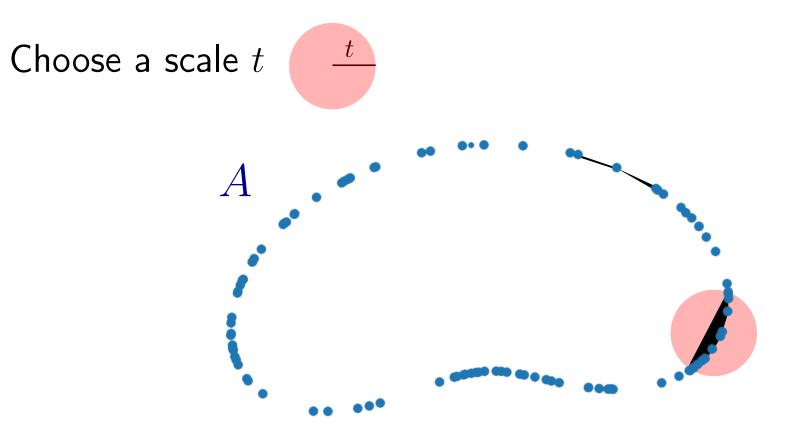
$$\operatorname{Risk}_{n}(\mu, \hat{M}) := \mathbb{E}_{\mu \otimes n}[d_{H}(\hat{M}(\mathcal{X}_{n}), M)]$$
$$\mathcal{R}_{n}(\mathcal{P}) := \text{the best average precision in the worst case}$$
$$:= \inf_{\hat{M}} \sup_{\mu \in \mathcal{P}} \operatorname{Risk}_{n}(\mu, \hat{M})$$

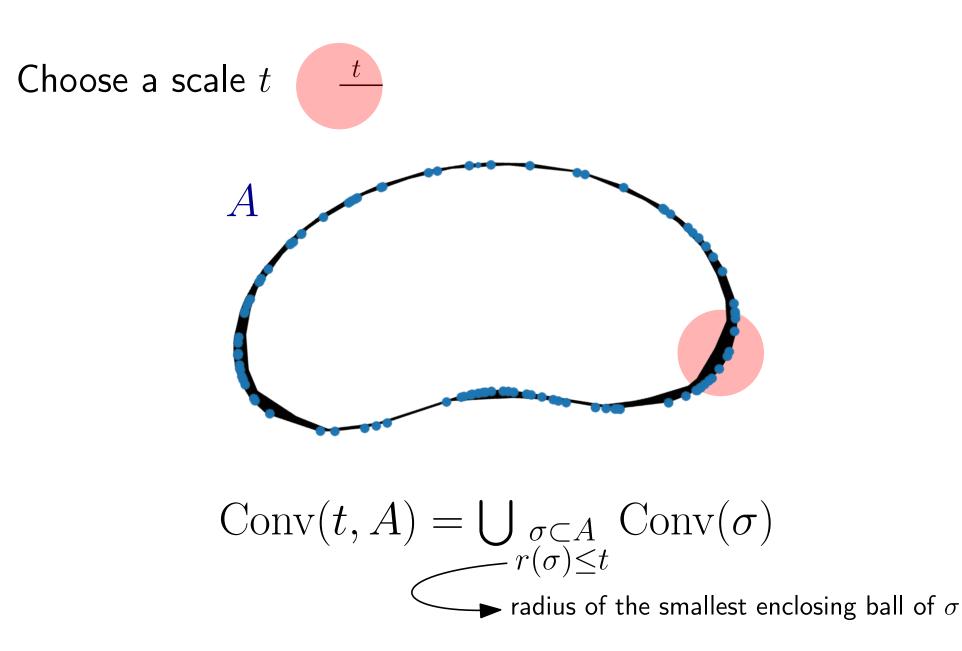
$$\mathcal{R}_n(\mathcal{P}^d_{\tau_{\min},f_{\min},f_{\max}}) \asymp \left(\frac{\ln n}{n}\right)^{2/d}$$
 [Genovese & al. '12]
[Kim Zhou '15]



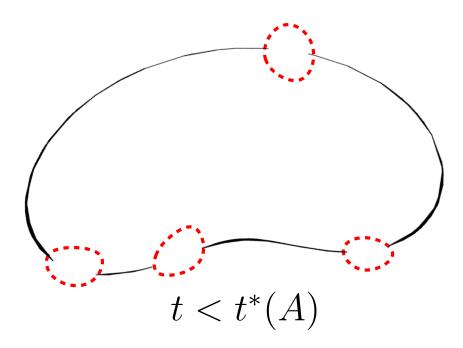


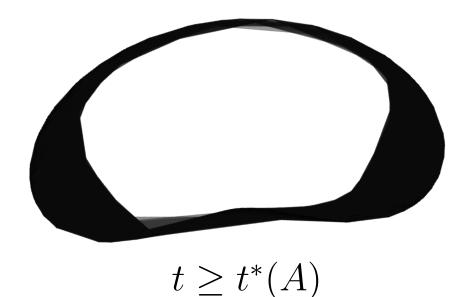




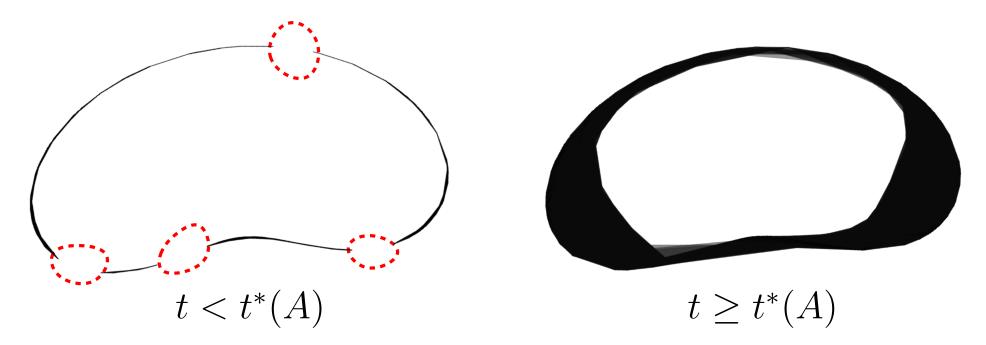


Let $t^*(A) := \inf\{t < \tau(M) : \pi_M(\text{Conv}(t, A)) = M\}.$





Let $t^*(A) := \inf\{t < \tau(M) : \pi_M(\text{Conv}(t, A)) = M\}.$

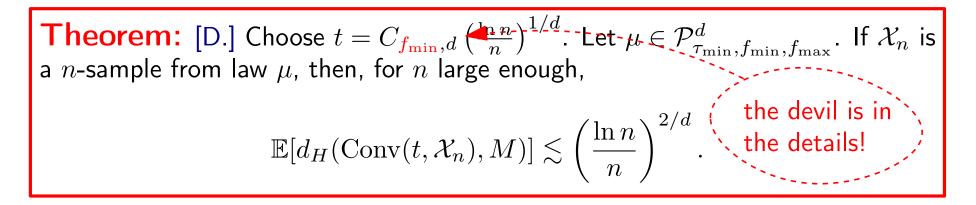


 \rightarrow Choose $t > t^*(A)$, but as small as possible.

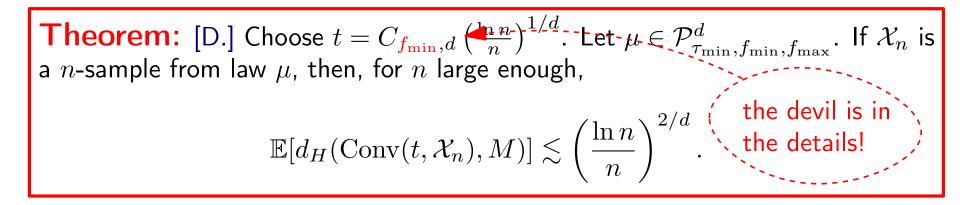
Proposition: [D.] If $t \ge t^*(A)$, then $d_H(\operatorname{Conv}(t, A), M) \le \frac{t^2}{\tau(M)}$.

Theorem: [D.] Choose $t = C_{f_{\min},d} \left(\frac{\ln n}{n}\right)^{1/d}$. Let $\mu \in \mathcal{P}^d_{\tau_{\min},f_{\min},f_{\max}}$. If \mathcal{X}_n is a *n*-sample from law μ , then, for *n* large enough,

$$\mathbb{E}[d_H(\operatorname{Conv}(t,\mathcal{X}_n),M)] \lesssim \left(\frac{\ln n}{n}\right)^{2/d}$$



- → Same problem for all minimax manifold estimators [Genovese & al '12] [Aamari Levrard '18 '19] [Puchkin Spokoiny '19] [Sober Levin '19]
- \rightarrow Problem of parameter tuning is a classical problem: model/parameter selection
 - cross-validation [Arlot Celisse '09]
 - penalization (e.g. ridge, Lasso, BIC/AIC)
 - Goldenshluger-Lepski method/ PCO method [Lacour Massart Rivoirard '17]



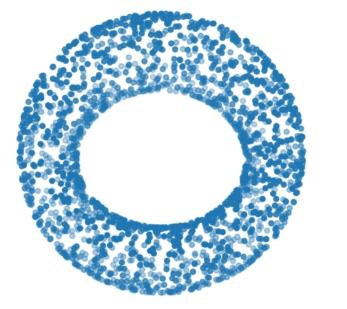
- → Same problem for all minimax manifold estimators [Genovese & al '12] [Aamari Levrard '18 '19] [Puchkin Spokoiny '19] [Sober Levin '19]
- \rightarrow Problem of parameter tuning is a classical problem: model/parameter selection
 - cross-validation [Arlot Celisse '09]
 - penalization (e.g. ridge, Lasso, BIC/AIC)
 - Goldenshluger-Lepski method/ PCO method [Lacour Massart Rivoirard '17]

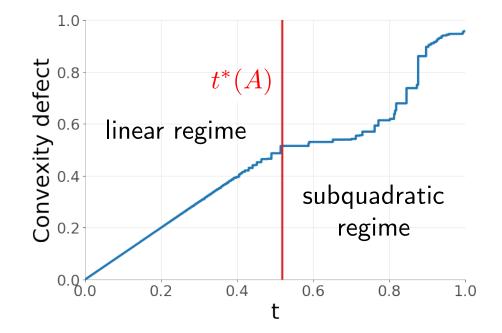
"Compare each estimator of the family with the most overfitted estimator of the family"

Convexity defect function

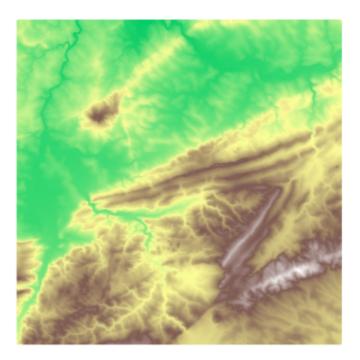
Definition: [Attali, Lieutier, Salinas '12] Let $A \subset \mathbb{R}^D$. The convexity defect function of A at scale t is defined by $h(t, A) := d_H(\text{Conv}(t, A), A)$.

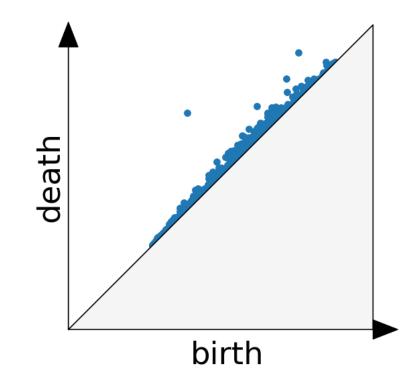
- \rightarrow For M a manifold, $h(t, M) \leq t^2/\tau(M)$.
- \rightarrow And for \mathcal{X}_n ?



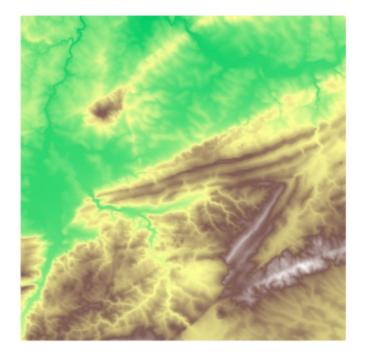


Part II Statistics and persistence diagrams

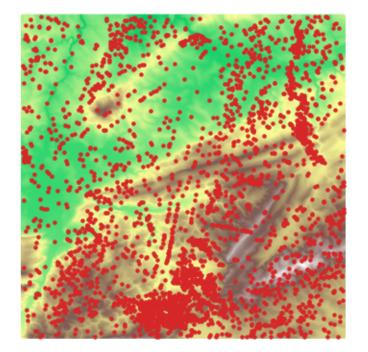




What is a peak?

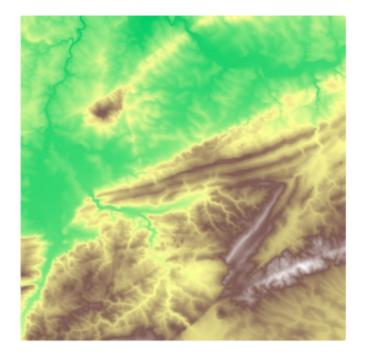


What is a peak?



A local maximum of the elevation function?

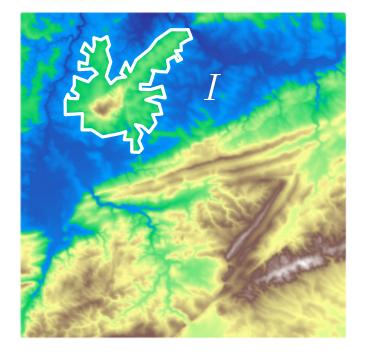
What is a peak?



A local maximum of the elevation function?

What is a peak?

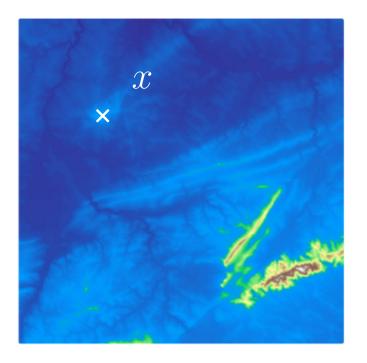
The island *I* appears at sea level *b* (its **birth time**) ...



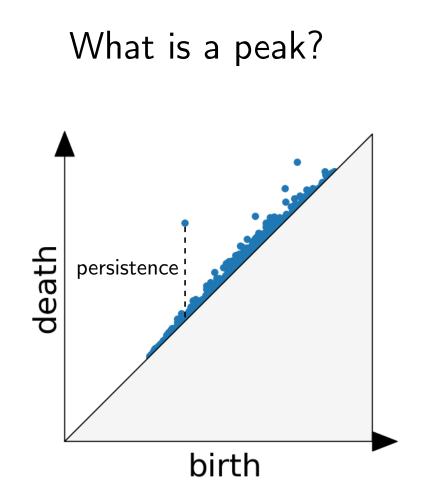
What is a peak?

The island I appears at sea level b (its **birth time**) ...

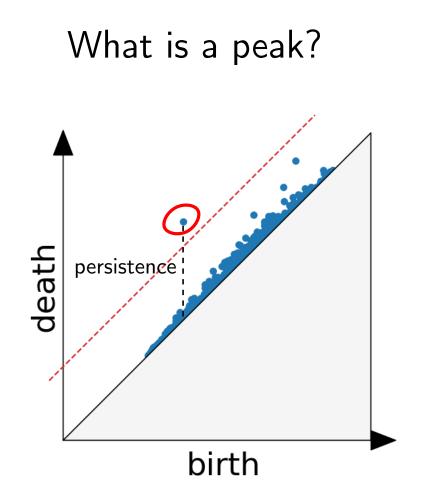
... and disapears at sea level d (its **death time**) at local maximum x.



The point x is a peak if the **persistence** := d - b of the island Iis larger than 91m (= 300ft).



The persistence diagram (PD) of the elevation function is the collection of the points (b, d), where (b, d) corresponds to the birth/death of an island.

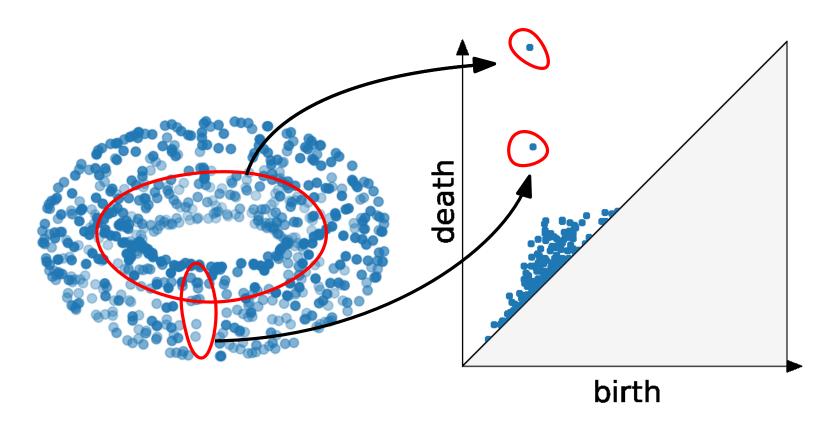


The persistence diagram (PD) of the elevation function is the collection of the points (b, d), where (b, d) corresponds to the birth/death of an island.

Persistence diagrams

• Let \mathcal{X} be a loc. finite simplicial complex. Then, the persistence diagram $\operatorname{dgm}(\phi)$ is defined for any proper continuous function $\phi: \mathcal{X} \to [0,\infty)$.

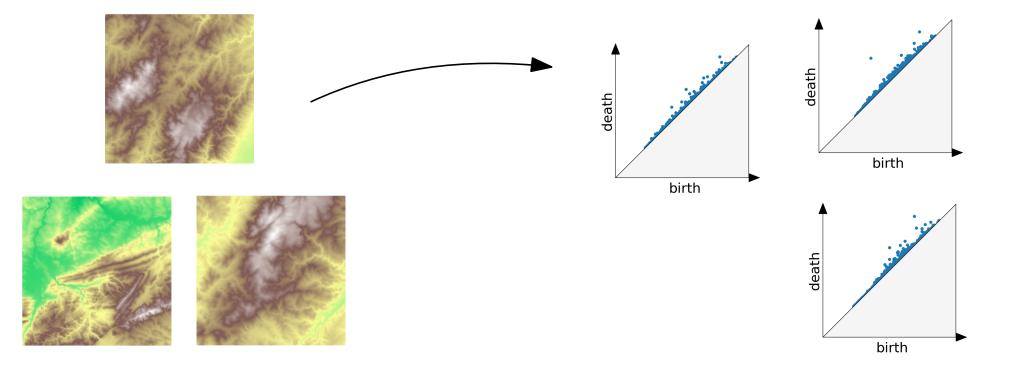
Ex: ϕ is the distance function to a set A.



Persistence diagrams

• Let \mathcal{X} be a loc. finite simplicial complex. Then, the persistence diagram $\operatorname{dgm}(\phi)$ is defined for any proper continuous function $\phi: \mathcal{X} \to [0,\infty)$.

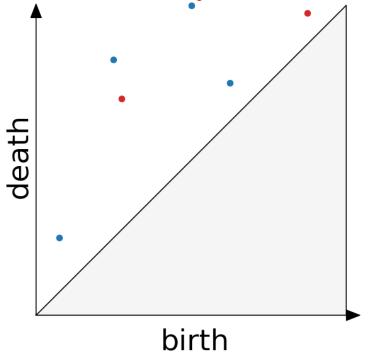
Ex: ϕ is the distance function to a set A.



Let *a* and *b* be two persistence diagrams. Let $1 \le p \le \infty$. Let $\Gamma(a, b)$ be the set of bijections between $a \cup \partial \Omega$ and $b \cup \partial \Omega$.

$$d_p(a, b) := \inf_{\gamma \in \Gamma(a, b)} \left(\sum_{x \in a \cup \partial \Omega} |x - \gamma(x)|^p \right)^{1/p}$$

$$Pers_(a) := \sum pers(x)$$

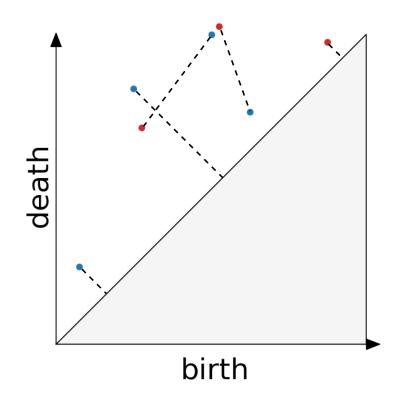


$$\operatorname{Pers}_p(a) := \sum_{x \in a} \operatorname{pers}(x)^p$$

$$\mathcal{D}^p := \{a : \operatorname{Pers}_p(a) < \infty\}$$

Let a and b be two persistence diagrams. Let $1 \le p \le \infty$. Let $\Gamma(a, b)$ be the set of bijections between $a \cup \partial \Omega$ and $b \cup \partial \Omega$.

$$d_p(\boldsymbol{a}, \boldsymbol{b}) := \inf_{\gamma \in \Gamma(\boldsymbol{a}, \boldsymbol{b})} \left(\sum_{x \in \boldsymbol{a} \cup \partial \Omega} |x - \boldsymbol{\gamma}(x)|^p \right)^{1/p}$$

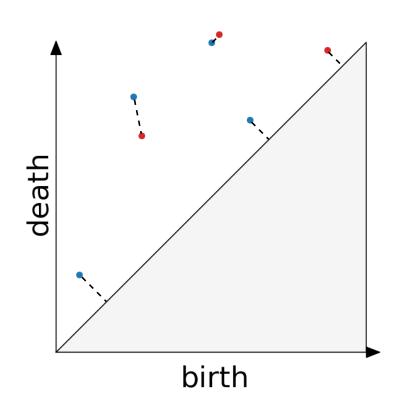


$$\operatorname{Pers}_p(a) := \sum_{x \in a} \operatorname{pers}(x)^p$$

$$\mathcal{D}^p := \{a : \operatorname{Pers}_p(a) < \infty\}$$

Let a and b be two persistence diagrams. Let $1 \le p \le \infty$. Let $\Gamma(a, b)$ be the set of bijections between $a \cup \partial \Omega$ and $b \cup \partial \Omega$.

$$d_p(a, b) := \inf_{\gamma \in \Gamma(a, b)} \left(\sum_{x \in a \cup \partial \Omega} |x - \gamma(x)|^p \right)^{1/p}$$

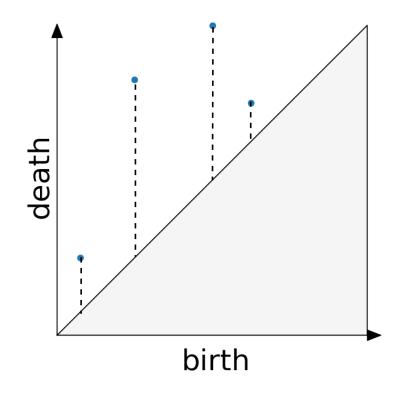


$$\operatorname{Pers}_p(a) := \sum_{x \in a} \operatorname{pers}(x)^p$$

$$\mathcal{D}^p := \{a : \operatorname{Pers}_p(a) < \infty\}$$

Let a and b be two persistence diagrams. Let $1 \le p \le \infty$. Let $\Gamma(a, b)$ be the set of bijections between $a \cup \partial \Omega$ and $b \cup \partial \Omega$.

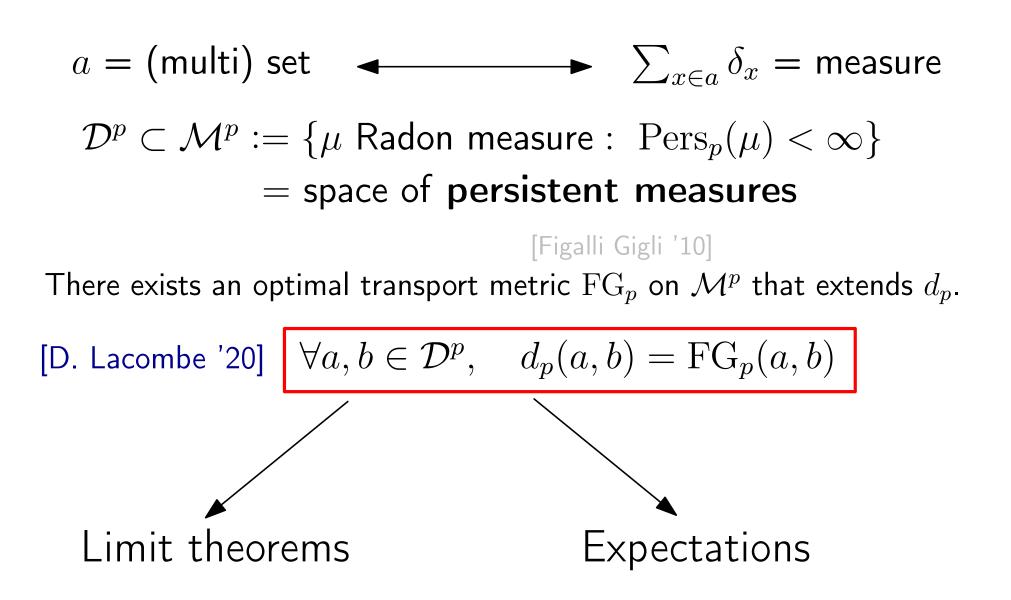
$$d_p(a, b) := \inf_{\gamma \in \Gamma(a, b)} \left(\sum_{x \in a \cup \partial \Omega} |x - \gamma(x)|^p \right)^{1/p}$$



$$\operatorname{Pers}_p(a) := \sum_{x \in a} \operatorname{pers}(x)^p$$

$$\mathcal{D}^p := \{a : \operatorname{Pers}_p(a) < \infty\}$$

 $a = (\text{multi}) \text{ set } \longrightarrow \sum_{x \in a} \delta_x = \text{measure}$ $\mathcal{D}^p \subset \mathcal{M}^p := \{ \mu \text{ Radon measure} : \operatorname{Pers}_p(\mu) < \infty \}$ = space of persistent measures[Figalli Gigli '10]There exists an optimal transport metric FG_p on \mathcal{M}^p that extends d_p . [D. Lacombe '20] $\forall a, b \in \mathcal{D}^p, \quad d_p(a, b) = \operatorname{FG}_p(a, b)$

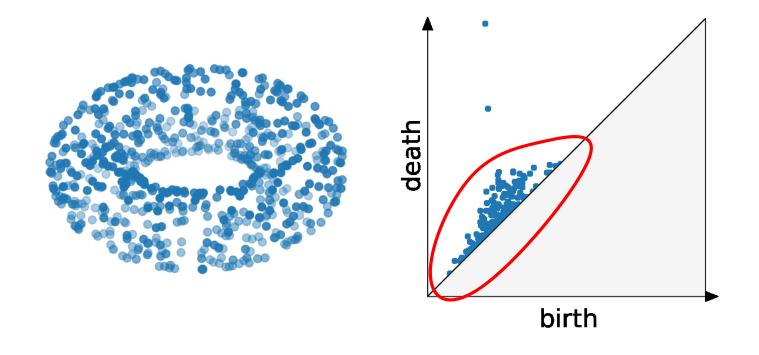


The structure of the topological noise

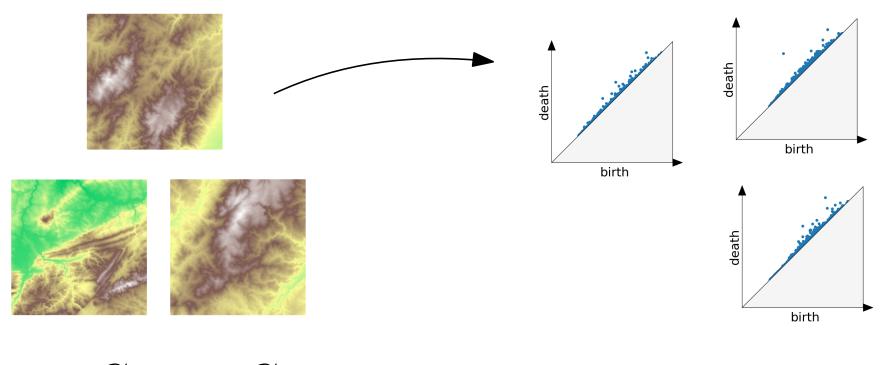
Theorem: [D. Polonik '19] Let f be a density on $[0,1]^d$ satisfying $0 < f_{\min} \le f \le f_{\max} < \infty$. Let \mathcal{X}_n be a *n*-sample of density f, and a_n the persistence diagram of $n^{1/d}\mathcal{X}_n$. Then, there exists $\mu \ne 0$ in \mathcal{M}^p such that

$$\operatorname{FG}_p\left(\frac{a_n}{n},\mu\right) \to 0$$

$$\implies \operatorname{Pers}_p(a_n) \simeq n^{1-p/d}$$



The expected persistence diagram



 C_1,\ldots,C_K a_1,\ldots,a_K

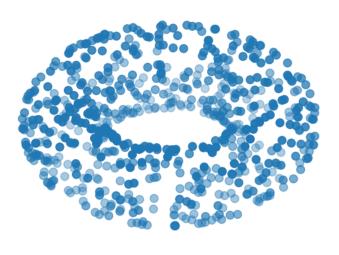
"average topology" =
$$\overline{a}_K = \frac{a_1 + \dots + a_K}{K}$$

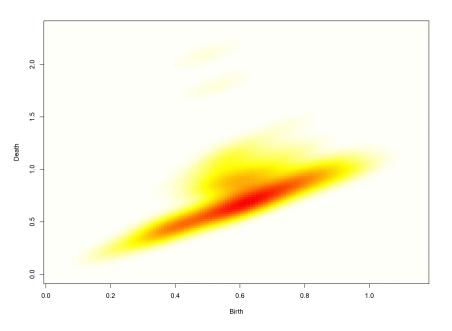
The expected persistence diagram

Let P be a probability measure on \mathcal{D}^p . The **expected persistence** diagram E(P) is the element of \mathcal{M}^p defined by the relation

 $\forall B \text{ measurable set}, \quad E(P)(B) = \mathbb{E}_{a \sim P}[a(B)]$

Theorem 1: [Chazal D. '19] Let P be the distribution of the random persistence diagram obtained by sampling n points on a manifold M with (smooth) density f. Then, E(P) is a measure with a (smooth) density.





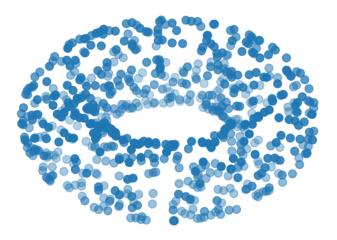
The expected persistence diagram

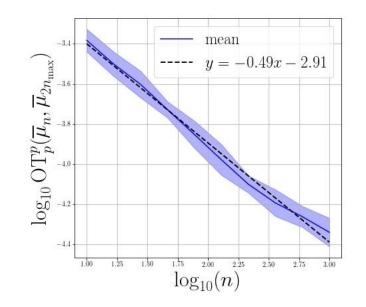
Let P be a probability measure on \mathcal{D}^p . The expected persistence diagram E(P) is the element of \mathcal{M}^p defined by the relation

 $\forall B \text{ measurable set}, \quad E(P)(B) = \mathbb{E}_{a \sim P}[a(B)]$

Theorem 2: [D. Lacombe '21] Let a_1, \ldots, a_K be a *K*-sample of distribution *P* with $Card(a_i) \leq M$ a.s. and a_i supported on $\mathcal{B}(0, L)$ a.s. Then,

 $\mathbb{E}[\mathrm{FG}_p^p(\overline{a}_K, E(P))] \lesssim ML^p K^{-1/2}.$





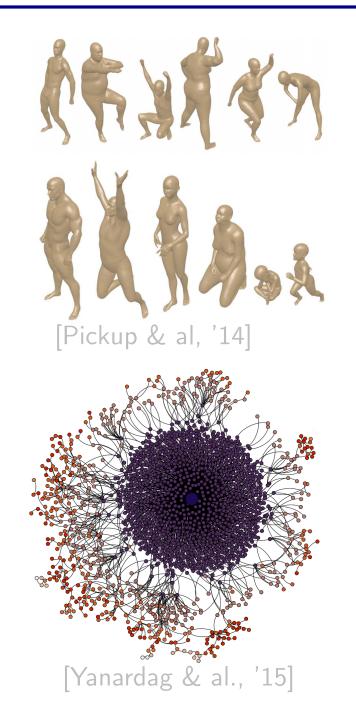
• In Part I, we proposed an adaptive manifold estimator \rightarrow and in the presence of outliers?

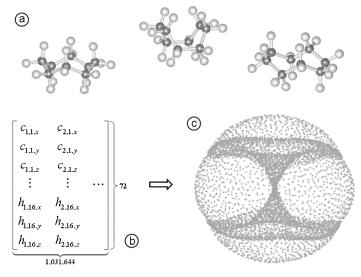
• In Part II, we took a measure point of view to study the space of persistence diagrams.

"Any optimal transport related ML technique can be translated to the persistence diagram setting."

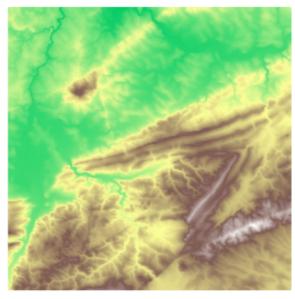
 \rightarrow quantization, entropic regularization, differentiation, ...

Geometry and topology in data





[Martin & al, '10]



[IGN elevation dataset]

Manifold inference

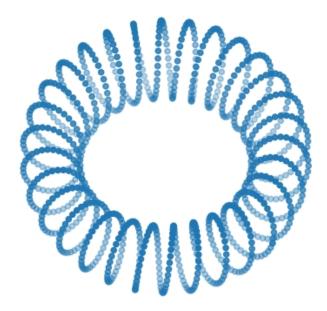
- $\mathcal{X}_n = \{X_1, \dots, X_n\} \subset \mathbb{R}^D$ is a set of observations close to a manifold M (dimension d, compact, without boundary)
- Goal: reconstruct a geometric invariant of M. (ex: dimension, tangent spaces, curvature, M itself)

Question 1: How to quantify the quality of a given reconstruction?

• The Hausdorff distance between A and $B \subset \mathbb{R}^D$ is defined by:

 $d_{H}(A|B) := \sup\{d(x, B) : x \in A\}$ $d_{H}(A, B) := \max\{d_{H}(A|B), d_{H}(B|A)\}$ A B

A trickier example: M =spire or torus?



Convexity defect function

