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The manifold assumption

X, =1{X1,...,X,} = set of n random observations
in RP
n <KD

Key assumption:

There is a low dimensional structure underlying the
observations X,,.

L/' X, lies close to a manifold M.

Goal: propose a reconstruction
M that is close to M for the
Hausdorff distance dp
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Find the curve fitting the points!
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Sampling hypotheses

Find the curve fitting the points!
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Sampling hypotheses

The reach of M is the radius of the largest ball one can make roll freely around
M without bumping into it.

T(M)

controls the size of the minimal bottleneck controls the curvature radius



Minimax rates

Definition: P¢ . . is the set of distributions
supported on a d-dimensional manifold M with reach

7(M) > Tin and density f satisfying

Vee M, 0< faon < f(2) < fimax < 00.

A

Risk,, (11, M) = E,en[dg(M(X,), M)]
R.,.(P) := the best average precision in the worst case

L= infMSU.pluepRiSkn(:ua M)

Ron (Pgminafminafmax) ~ (ln_n) e

n



L ocal convex hull
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L ocal convex hull

Choose a scale ¢ -

A

Conv(t, A) =) sca Conv(o)
r(o)<t
Cradius of the smallest enclosing ball of &



L ocal convex hull

Let t*(A) == inf{t < 7(M) : 7wy (Conv(t, A)) = M}.




L ocal convex hull

Let t*(A) == inf{t < 7(M) : 7wy (Conv(t, A)) = M}.

t > t5(A)

— Choose t > t*(A), but as small as possible.

Proposition: [D]If t > t*(A), then dp (Conv(t, A), M) < 5.




L ocal convex hull

a n-sample from law g, then, for n large enough,

Eldg (Conv(t, X,), M)] < (

Inn

n

Theorem: [D.] Choose t = C}_. 4 (mT”)l/d. Let u € Pf_lm.

>2/d

1nafmin7fmax

N | % T




L ocal convex hull

Theorem: [D.] Choose t = C}_. 4 “’) """ CtetpePE . I A, s

Tl’l’lll’l

a n-sample from law (4, then, for n large enough o fmin Jmex” ~
2/q | the devilisin™

Inn ) ™" the details!

Eldg (Conv(t, &), M) S | — . . the details!

~
n

-
T e = = = T

— Same problem for all minimax manifold estimators

— Problem of parameter tuning is a classical problem: model/parameter selection

e cross-validation
e penalization (e.g. ridge, Lasso, BIC/AIC)
e Goldenshluger-Lepski method/ PCO method
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— Same problem for all minimax manifold estimators

— Problem of parameter tuning is a classical problem: model/parameter selection

e cross-validation
e penalization (e.g. ridge, Lasso, BIC/AIC)
e Goldenshluger-Lepski method/ PCO method

Wtor of the family with

the most overfitted estimator of the family”




Convexity defect function

Definition: Let A C RP. The convexity defect
function of A at scale ¢ is defined by h(t, A) := dg(Conv(t, A), A).

— For M a manifold, h(t, M) < t?/7(M).
— And for X,,7
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Statistics and persistence diagrams
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Alpinism

What is a peak?
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Alpinism

What is a peak?

The island I appears
at sea level b (its
birth time) ...




Alpinism

The island I appears
at sea level b (its
birth time) ...

.. and disapears at
sea level d (its death
time) at local
maximum .

What is a peak?

The point z is a peak
if the persistence

:=d — b of the island I
is larger than 91m

(= 300ft).



Alpinism

What is a peak?

A
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1
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birth

The persistence diagram (PD) of the elevation function is the collection of the
points (b, d), where (b, d) corresponds to the birth/death of an island.



Alpinism

What is a peak?
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The persistence diagram (PD) of the elevation function is the collection of the
points (b, d), where (b, d) corresponds to the birth/death of an island.



Persistence diagrams

o Let X be a loc. finite simplicial complex. Then, the persistence
diagram dgm(¢) is defined for any proper continuous function

¢: X —0,00) .

Ex: ¢ is the distance function to a set A.
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Persistence diagrams

o Let X be a loc. finite simplicial complex. Then, the persistence

diagram dgm(¢) is defined for any proper continuous function
¢: X —[0,00) .

Ex: ¢ is the distance function to a set A.
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Distance between persistence diagrams

Let @ and b be two persistence diagrams. Let 1 < p < co. Let I'(a,b)
be the set of bijections between a U 0€) and b U 0f).

— 1
dp(a,b) == Inf.er(a,n) (erauaﬂ |z — 7@)‘}?) ’

: Pers,(a) := > ., pers(x)?

death

DP :={a: Pers,(a) < oo}

birth
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Distance between persistence diagrams
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The measure point of view

a = (multi) set > ) ..c,0z = Mmeasure

DP C MP := {u Radon measure : Pers,(u) < oo}
— space of persistent measures

There exists an optimal transport metric FG,, on M? that extends d,.

[D. Lacombe 20] | Va,b € DP, d,(a,b) = FG,(a,D)




The measure point of view

a = (multi) set > ) ..c,0z = Mmeasure

DP C MP := {u Radon measure : Pers,(u) < oo}
— space of persistent measures
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Limit theorems Expectations



The structure of the topological noise

Theorem: [D. Polonik '19] Let f be a density on [0, 1]? satisfying
0 < fmin < f < fimax < 00. Let X, be a n-sample of density f, and a,, the
persistence diagram of n'/?X,,. Then, there exists i # 0 in MP such that

FG, (%,,u) — 0

— Pers,(a,) ~ n'P/

A

death

birth



The expected persistence diagram

death
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birth

"average topology’ = ay



The expected persistence diagram

Let P be a probability measure on DP. The expected persistence
diagram E(P) is the element of MP? defined by the relation

VB measurable set, FE(P)(B) =E,.pla(B)]

Theorem 1: [Chazal D. '19] Let P be the distribution of the random persistence
diagram obtained by sampling n points on a manifold M with (smooth) density f.
Then, E(P) is a measure with a (smooth) density.

Birth




The expected persistence diagram

Let P be a probability measure on DP. The expected persistence
diagram E(P) is the element of MP? defined by the relation

VB measurable set, FE(P)(B) =E,.pla(B)]

Theorem 2: [D. Lacombe '21] Let a4, ...,ax be a K-sample of distribution P
with Card(a;) < M a.s. and a; supported on (0, L) a.s. Then,

E[FGY(ax, B(P))] S MLPK~Y/2.
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Conclusion

e In Part |, we proposed an adaptive manifold estimator

— and in the presence of outliers?

e In Part |l, we took a measure point of view to study
the space of persistence diagrams.

"Any optimal transport related ML technique can be
translated to the persistence diagram setting.”

— quantization, entropic regularization, differentiation, ...



Geometry and topology in data
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Manifold inference

o X, ={Xy,...,X,} CRP is a set of observations close to a manifold M
(dimension d, compact, without boundary)

e Goal: reconstruct a geometric invariant of M. (ex: dimension, tangent spaces,
curvature, M itself)

Question 1: How to quantify the quality of a given reconstruction?

e The Hausdorff distance between A and B C RP is defined by:

dy(A|B) :=sup{d(z,B): x € A}
dy(A, B) := max{dy(A|B),dyg(B|A)}




Sampling hypotheses

A trickier example: M = spire or torus?




Convexity defect function

Choose 0 < A < 1 and t. = 1/Inn.
ta(A) == sup{t < tmax : h(t,A) > At}
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Theorem: [D.] Let p € P2
for n large enough,

. If X, is a n-sample from law p, then,

in,fminyfmax

2/d
Ed g (Conv(ts(Xyn), Xn), M) < (%) .




