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Part I
Manifold inference



The manifold assumption

n� D

Key assumption:
There is a low dimensional structure underlying the
observations Xn.

Xn lies close to a manifold M .

M

M Goal: propose a reconstruction
M̂ that is close to M for the
Hausdorff distance dH

Xn = {X1, . . . , Xn} = set of n random observations
in RD
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the ugly truth



Sampling hypotheses

τ (M)

M

The reach of M is the radius of the largest ball one can make roll freely around
M without bumping into it. [Federer ’59]

controls the size of the minimal bottleneck

τ (M)

M

controls the curvature radius



Minimax rates

Rn(P) := the best average precision in the worst case

:= infM̂supµ∈PRiskn(µ, M̂)

Rn(Pdτmin,fmin,fmax
) �

(
lnn
n

)2/d [Genovese & al. ’12]
[Kim Zhou ’15]

Definition: Pdτmin,fmin,fmax
is the set of distributions µ

supported on a d-dimensional manifold M with reach
τ(M) ≥ τmin and density f satisfying

∀x ∈M, 0 < fmin ≤ f(x) ≤ fmax <∞.

[Genovese & al. ’12]

Riskn(µ, M̂) := Eµ⊗n[dH(M̂(Xn),M)]
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Local convex hull

Choose a scale t t

A

Conv(t, A) =
⋃

σ⊂A
r(σ)≤t

Conv(σ)

radius of the smallest enclosing ball of σ



Local convex hull

Let t∗(A) := inf{t < τ(M) : πM(Conv(t, A)) = M}.

t < t∗(A) t ≥ t∗(A)



Local convex hull

Let t∗(A) := inf{t < τ(M) : πM(Conv(t, A)) = M}.

t < t∗(A) t ≥ t∗(A)

→ Choose t > t∗(A), but as small as possible.

Proposition: [D.] If t ≥ t∗(A), then dH(Conv(t, A),M) ≤ t2

τ(M) .



Local convex hull

Theorem: [D.] Choose t = Cfmin,d

(
lnn
n

)1/d
. Let µ ∈ Pdτmin,fmin,fmax

. If Xn is
a n-sample from law µ, then, for n large enough,

E[dH(Conv(t,Xn),M)] .

(
lnn
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the devil is in
the details!

→ Problem of parameter tuning is a classical problem: model/parameter selection

• cross-validation [Arlot Celisse ’09]
• penalization (e.g. ridge, Lasso, BIC/AIC)
• Goldenshluger-Lepski method/ PCO method [Lacour Massart Rivoirard ’17]

→ Same problem for all minimax manifold estimators [Genovese & al ’12] [Aamari
Levrard ’18 ’19] [Puchkin Spokoiny ’19] [Sober Levin ’19]
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the details!

→ Problem of parameter tuning is a classical problem: model/parameter selection

• cross-validation [Arlot Celisse ’09]
• penalization (e.g. ridge, Lasso, BIC/AIC)
• Goldenshluger-Lepski method/ PCO method [Lacour Massart Rivoirard ’17]

→ Same problem for all minimax manifold estimators [Genovese & al ’12] [Aamari
Levrard ’18 ’19] [Puchkin Spokoiny ’19] [Sober Levin ’19]

”Compare each estimator of the family with
the most overfitted estimator of the family”



Convexity defect function

Definition: [Attali, Lieutier, Salinas ’12] Let A ⊂ RD. The convexity defect
function of A at scale t is defined by h(t, A) := dH(Conv(t, A), A).

→ For M a manifold, h(t,M) ≤ t2/τ(M).

→ And for Xn?

linear regime

subquadratic
regime

t∗(A)



Part II
Statistics and persistence diagrams
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What is a peak?
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Alpinism

The island I appears
at sea level b (its
birth time) ...

... and disapears at
sea level d (its death
time) at local
maximum x.

x
The point x is a peak
if the persistence
:= d− b of the island I
is larger than 91m
(= 300ft).

What is a peak?
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The persistence diagram (PD) of the elevation function is the collection of the
points (b, d), where (b, d) corresponds to the birth/death of an island.

persistence
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Persistence diagrams

• Let X be a loc. finite simplicial complex. Then, the persistence
diagram dgm(φ) is defined for any proper continuous function
φ : X → [0,∞) .

Ex: φ is the distance function to a set A.
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Distance between persistence diagrams

Let a and b be two persistence diagrams. Let 1 ≤ p ≤ ∞. Let Γ(a, b)
be the set of bijections between a ∪ ∂Ω and b ∪ ∂Ω.

dp(a, b) := infγ∈Γ(a,b)

(∑
x∈a∪∂Ω |x− γ(x)|p

)1/p

Dp := {a : Persp(a) <∞}

Persp(a) :=
∑

x∈a pers(x)p
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The measure point of view

∑
x∈a δx = measurea = (multi) set

Dp ⊂Mp := {µ Radon measure : Persp(µ) <∞}

There exists an optimal transport metric FGp onMp that extends dp.

∀a, b ∈ Dp, dp(a, b) = FGp(a, b)

[Figalli Gigli ’10]

[D. Lacombe ’20]

= space of persistent measures
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Limit theorems Expectations

= space of persistent measures



The structure of the topological noise

Theorem: [D. Polonik ’19] Let f be a density on [0, 1]d satisfying
0 < fmin ≤ f ≤ fmax <∞. Let Xn be a n-sample of density f , and an the
persistence diagram of n1/dXn. Then, there exists µ 6= 0 inMp such that

FGp

(an
n
, µ
)
→ 0

=⇒ Persp(an) ' n1−p/d



The expected persistence diagram

a1, . . . , aKC1, . . . , CK

”average topology” = aK = a1+···+aK
K



The expected persistence diagram

Let P be a probability measure on Dp. The expected persistence
diagram E(P ) is the element ofMp defined by the relation

∀B measurable set, E(P )(B) = Ea∼P [a(B)]

Theorem 1: [Chazal D. ’19] Let P be the distribution of the random persistence
diagram obtained by sampling n points on a manifold M with (smooth) density f .
Then, E(P ) is a measure with a (smooth) density.



The expected persistence diagram

Let P be a probability measure on Dp. The expected persistence
diagram E(P ) is the element ofMp defined by the relation

∀B measurable set, E(P )(B) = Ea∼P [a(B)]

Theorem 2: [D. Lacombe ’21] Let a1, . . . , aK be a K-sample of distribution P
with Card(ai) ≤M a.s. and ai supported on B(0, L) a.s. Then,

E[FGpp(aK , E(P ))] .MLpK−1/2.



Conclusion

• In Part I, we proposed an adaptive manifold estimator
→ and in the presence of outliers?

• In Part II, we took a measure point of view to study
the space of persistence diagrams.

”Any optimal transport related ML technique can be
translated to the persistence diagram setting.”

→ quantization, entropic regularization, differentiation, ...



Geometry and topology in data

[Martin & al, ’10]

[IGN elevation dataset]

[Pickup & al, ’14]

[Yanardag & al., ’15]



Manifold inference

• Xn = {X1, . . . , Xn} ⊂ RD is a set of observations close to a manifold M
(dimension d, compact, without boundary)

• Goal: reconstruct a geometric invariant of M . (ex: dimension, tangent spaces,
curvature, M itself)

Question 1: How to quantify the quality of a given reconstruction?

dH(A|B) := sup{d(x,B) : x ∈ A}
dH(A,B) := max{dH(A|B), dH(B|A)}

• The Hausdorff distance between A and B ⊂ RD is defined by:

B

A

x



Sampling hypotheses

A trickier example: M = spire or torus?



Convexity defect function

Choose 0 < λ < 1 and tmax = 1/ lnn.

tλ(A) := sup{t < tmax : h(t, A) ≥ λt}

Theorem: [D.] Let µ ∈ Pdτmin,fmin,fmax
. If Xn is a n-sample from law µ, then,

for n large enough,

EdH(Conv(tλ(Xn),Xn),M) .

(
lnn

n

)2/d

.


