
Decision trees and random forests

Vincent Divol

Decision trees are a family of non-parametric machine learning models that are able to
handle heterogeneous data (ordered and categorical), while being easily interpretable. When
combined with ensemble methods (yielding random forests), they give one of the best off-the-
shelf prediction algorithms available.

1 Decision trees

Trees are a data structure of major importance in computer science, used for e.g. search algo-
rithms, clustering tasks, or in natural language processing. Mathematically speaking, a tree is
a special kind of graph. A graph G is given by a set of nodes V and a set of edges E, where an
edge e ∈ E consist of a set of two distinct (unordered) vertices. A tree T is a graph in which
any two nodes are connected by exactly one path. A rooted tree is a tree in which one of the
nodes has been designated as the root. A rooted tree can actually be seen as directed graph,
by giving every edge a direction (away from the root): every edge e ∈ E is represented as an
ordered pair e = (t1, t2). For such a directed edge, t1 is called the parent of t2 and t2 is said
to be a child of t1. We say that a node is internal if it has one or more children, and terminal
otherwise. Terminal nodes are also called leaves. A binary tree is rooted tree where all internal
nodes have exactly two children.

We consider a regression setting, where observations x ∈ X are assigned labels y ∈ Y. For
decision trees, the set of labels Y can be arbitrary, but we will focus in these notes on binary
classification (Y = {−1, 1}) or regression (Y = R) for the sake of exposition. A decision tree is
a predictor h : X → Y that can be represented by a binary tree T = (V,E) in the following way.
Each node of the tree represents a subset of X . The rooted node t0 represents X , and if Xt is
the set associated with a node t ∈ V , then the children t1 and t2 of t represent a partition of Xt:

Xt = Xt1 ⊔ Xt2 . (1)

We call such a partition a split of Xt into Xt1 and Xt2 . Remark that the leaves of the tree form
a partition of the feature space X . The predictor h : X :→ Y then makes constant predictions
Ŷt on each set Xt for t a leaf of T .

There are still many issues to clarify to understand how a decisition tree works. How are
the different splits chosen? How do we pick the value Ŷt of the prediction h on each final split?

Let us assume that the observations x ∈ X are given as a list of features x = (x(1), . . . , x(K)).
The different features can be heterogeneous, that is some of them can be continuous while some
others can be categorical. Mathematically speaking, we write X = X (1) × X (2) × · · · × X (K).
Then, the split of Xt at the node t can be made by first selecting a feature (that is we pick k),
and then splitting Xk in a simple way. For instance, if X (k) represents a continuous feature in
[0, 1], we can split X (k) in two by picking a threshold st ∈ [0, 1], and writing

[0, 1] = [0, st) ⊔ [st, 1]. (2)

Classification trees are typically built by choosing simple splits of this form in a sequential
manner. That is we ask a series of questions of the form “Is the feature x(k) of the observation

1

x smaller than some threshold s?” to assign x to a certain set Xt for some leaf t ∈ V . Once we
know that x ∈ Xt, we return h(x) = Ŷt. Therefore, a first property of decision trees is that they
are very quick to evaluate: the complexity only depends on the depth of the tree T .

2 Training with decision trees

Let (X1, Y1), . . . , (Xn, Yn) be a training dataset of i.i.d. observations from some law P on X ×
{−1,+1}. How can we fit a decision tree to this dataset?

A first remark is that, by adding sufficiently many leaves, it is always possible to find a
decision tree with perfect classification on the training set. More precisely, such a task is possible
with exactly n leaves (one by observation). However, such a tree will typically be very complex
and leads to overfitting. As Occam’s Razor principle suggests, we will favor simple trees that
make few mistakes to complex trees that make zero mistakes.

A good idea therefore would be to compute the simplest tree h (say, with the minimal number
of nodes) with perfect training accuracy, that is such that

êrr(h) =
1

n

n∑
i=1

1{h(Xi) ̸= Yi}. (3)

is equal to 0. However, it has been shown that finding such a tree is a NP-complete problem
[Laurent and Rivest, 1976]. Research has therefore focused on performing greedy searches for
trees with good training accuracy: at each step, one looks for the best split in a given tree that
will further decrease the training error.

Assume that we have access to a measure of impurity i(t) of each node t. The smaller i(t)
is, the purer the node is and the better the prediction Ŷt is on Xt. Then, the impurity of a tree
classifier h is given by

i(h) =
∑

t∈Leaf(T)

pti(t), (4)

where pt is the proportion of samples found in Xt. In other words, i(h) is the (weighted) average
impurity of a leaf in T . We will discuss later different impurity functions used in practice (based
on either the Shannon entropy or the Gini index).

Definition 2.1. The impurity decrease of a binary split s that divides a note t into a left node
tL and a right node tR is given by

∆i(s, t) = i(t)− ptL
pt

i(tL)−
ptR
pt

i(tR). (5)

If a new tree h̃ is obtained from h after a split s0 of a leaf t0 of h, then we have

i(h̃) =
∑

t∈Leaf(T)\{t0}

pti(t) + ptLi(tL) + ptRi(tR)

= i(h)− pt∆i(s, t).

Therefore, for a given node t, one should pick the binary split s that maximizes the impurity
decrease ∆i(s, t). The pseudoalgorithm below describes how a binary decision tree is trained.

Note that the algorithm depends upon a stopping criterion. The most basic stopping criterion
consists in stopping when the node t is such that Xt contains only one observation Xi. Then,
Ŷt is simply given by Yi and there is no use in further dividing the space X . Such a stopping
criterion yields to trees with n leaves, that are prone to overfitting. Therefore, other conditions
are added for early stopping:

2

Algorithm 1 Greedy learning of a binary decision tree

Input: Dataset (X1, Yi), . . . , (Xn, Yn), stopping criterion
Initialize: Tree with root node t0 and corresponding set Xt0 = X . Empty stack of open
nodes S.
Add t0 to S.
while S is not empty do

Choose t on top of the stack S
if the stopping criterion is met for t then

Decide on Ŷt = −1 or +1 by a majority vote on the Xis in Xt.
Define h(x) = Ŷt for x ∈ Xt,

else
Find the split on t that maximizes impurity decrease

s∗ = argmax
s

∆i(s, t). (6)

Partition Xt into XtR ⊔ XtL according to s∗

Create a left child node tL and a right child note tR of t
Add tL and tR to the stack S.

end if
end while

Output: Final classifier h.

• Set t as a leaf if the corresponding set contains less than nmin samples.

• Set t as a leaf if its depth is larger than some threshold dmax.

• Set t as a leaf if the total decrease in impurity pt∆i(s∗, t) is less than some threshold β.

These stopping criteria all require to tune hyperparameters to find the right trade-off, so that
the tree T is neither too shallow nor too deep. If the tree is too shallow, then the model is
too simple and will have large bias; whereas if the tree is too large, then there will be a large
generalization eror. Note that parameter selection (typically done through cross validation) can
be a computationally expensive task. These methods are called pre-pruning.

An alternative approach consists in computing an overfitting tree (with n leaves), and remove
some leaves afterwards in a post-pruning process. When a single decision tree is used, post-
pruning usually yields better results than pre-pruning. Anyway, we will see later that when
using ensemble of decision trees (random forests), no pruning procedure at all is needed to
achieve good generalization performance.

3 Impurity functions

Let us first introduce an impurity function that makes sense if our goal is to decrease the
training error of the decision tree as fast as possible. Let P (c|t) denote the probability that
Y = c conditionally on the event that X ∈ Xt, that is

P (c|t) = P (Y = c|X ∈ Xt) =
P (Y = c,X ∈ Xt)

P (X ∈ Xt)
. (7)

Although we do not have access to P (c|t), we can compute its empirical counterpart

P̂ (c|t) = 1

nt

n∑
i=1

1{Yi = c, Xi ∈ Xt}, (8)

3

where nt is the number of observations Xis that fall in Xt. The training error of a decision tree
h can be written as

êrr(h) =
1

n

n∑
i=1

1{h(Xi) ̸= Yi}

=
∑

t∈Leaf(T)

1

n

n∑
i=1

1{h(Xi) ̸= Yi, Xi ∈ Xt}

=
∑

t∈Leaf(T)

pt
nt

n∑
i=1

1{Ŷt ̸= Yi, Xi ∈ Xt}

=
∑

t∈Leaf(T)

pt(1− P̂ (Ŷt|t)).

Therefore, if we define the impurity function as

iR(t) = 1− P̂ (Ŷt|t), (9)

then the total impurity iR(h) is exactly equal to the training error êrr(h). Despite being a
natural choice for an impurity function, there are some caveats with iR. Indeed, if the majority
class remains the same in the two child nodes (Ŷt = ŶtL = ŶtR), then ∆iR(s, t) is zero:

∆iR(s, t) = iR(t)−
ptL
pt

i(tL)−
ptR
pt

i(tR)

= 1− P̂ (Ŷt|t)−
ptL
pt

(1− P̂ (Ŷt|tL))−
ptR
pt

(1− P̂ (Ŷt|tR))

= 0.

As a consequence, there will be many different splits for which ∆iR(s, t) = 0, and all these splits
are therefore considered as good. We would like to design an impurity function that pushes for
splits where the new predictions are made with higher confidence.

Definition 3.1. Let Q be a probability measure on a set {1, . . . , J}. We call the binary entropy
or Shannon entropy of Q the quantity

H(Q) = −
J∑

j=1

Q(j) log2(Q(j)). (10)

This notion of entropy was introduced by Claude Shannon in a seminal paper that launched
the field of information theory [Shannon, 1948]. Generally, if E is an event, the quantity
− log2(Q(E)) is called the information content of E. If E is a very surprising event (say a
certain number is a winning lottery number), then its information content will be very high,
whereas if E is not surprising (it always almost happens), then we will not learn any new in-
formation if we are said that E happened. The entropy is defined as the expected information
content of a given random expriment (here, the random experiment consists in picking at ran-
dom a number between 1 and J with distribution Q). For instance, if the number j drawn from
Q is always equal to a certain number j0, then H(Q) = 0, as there is absolutely no randomness
here. The other extreme is when the number j is drawn uniformly at random: in that case, the
entropy is maximal, equal to log2(J).

Another way to think about the entropy is the following. Assume that one wants to send
messages drawn from Q to a receiver. Of course, they can simply send the number j each time,

4

requiring log2(J) bits in the process (to write the number j in binary). Assume for instance
the word we are sending is taken at random from the dictionnary {kiwi, banana, zebra, apple}.
Then, we can use the code of length 2 = log2(4):

kiwi → 00

banana → 01

zebra → 10

apple → 11.

However, if both the sender and the receiver know Q in advance, there might be more succinct
ways of sending the code. Assume that we pick zebra 90% of the time, and one fruit uniformly
at random 10% of the time. Then, a better encoding is

zebra → 0

kiwi → 100

banana → 101

apple → 110.

With this scheme, under Q, the average length of the code sent will be 1 · 0.9+3 · 0.1 = 1.2 ≤ 2.
What is the minimal average length that we can reach? Shannon proved that the minimal
average length reachable by a code is between H(Q) and H(Q) + 1. To put it another way, the
Shannon entropy is the average length of i.i.d. words from Q encoded in the optimal way.

A commonly used impurity index is given by the Shannon impurity iH(t) given by the entropy
of the probability measure P̂ (·|t) over the label set Y. Another measure of “uncertainty” of a
distribution is given by its variance. For binary classification, the Gini index iG is based on this
measure, with iG(t) being the variance of the probability measure P̂ (·|t) (seen as a probability
measure on {0, 1}).

4 Random forests

We already encountered an exemple of ensemble methods with boosting: they consist in making
many different classifiers take part in a vote to obtain a classifier with way better accuracy
than any of those taking part in the vote. For boosting, the idea was to make weak classifiers
(with large bias, but small generalization error) vote to improve the complexity of the model,
therefore reducing the bias. In random forests, the aggregation will have an opposite effect.
Many different trees without pruning (with small bias, but high variance) will vote to obtain a
classifier with reduced variance.

To sum up, ensemble methods often work better than single models for two different main
reasons:

• Variance reduction: when the number of observations is small and single models are
too complex, classifiers will have large variance. When aggregating several such models, if
the different predictions are sufficiently uncorrelated, one can hope to have an averaging
effect that reduces the variance.

• Bias reduction: if the models are too simple, the optimal classifier cannot be represented
by one of the candidate models. However, combining several such simple models can
increase their representational capacity.

5

Mathematically speaking, an ensemble method is obtained by calling repeatedly randomized
algorithms on our set of observations Dn = ((X1, Y1), . . . , (Xn, Yn)). The randomness may come
from different sources:

• Bagging: Bagging (for Bootstrap AGGregatING) consists in training a classifier on a set
ofN observations drawn with replacement fromDn. WhenN = n, there are approximately
1/e ≈ 37% duplicates in the sample, the others being unique observations. By drawing
M such samples in a sequential way, we obtain a list of classifiers h1, . . . , hM , that can
then take part in a majority vote. When the classifier is unstable (that is small changes
in the data set can cause large changes in the learned models), bagging will generate very
different models, so that we are likely to benefit from the averaging process. However, this
also leads to a larger bias, as each individual model is trained on a data set of a smaller
effective size (roughly of size N(1− 1/e)), leading to simpler trees.

• Random variable selection: to split the node t, one looks for the split s of some feature
x(k) with ∆i(s, t) maximal. When the data are high dimensional, one can instead look
for the best splits among K different features drawn at random among all the possible
features. For high dimensional dataset, this will lead to individual classifiers with different
structures, although each of them will still have very small training error. Once again, we
can hope to have a smoothing effect when averaging these structurally different trees.

Random forests [Breiman, 2001] consist in combining these two ideas, and work surprisingly
well as an off-the-shelf method, giving result that are competitive with boosting algorithm such
as AdaBoost.

Contrary to boosting, for which we were able to develop mathematical heuristics, giving a
theoretical analysis of random forests is a delicate question, and is out of the scope of these
lecture notes [Scornet et al., 2015].

References

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine learning, 45:5–32.

[Laurent and Rivest, 1976] Laurent, H. and Rivest, R. L. (1976). Constructing optimal binary
decision trees is np-complete. Information processing letters, 5(1):15–17.

[Scornet et al., 2015] Scornet, E., Biau, G., and Vert, J.-P. (2015). Consistency of random
forests. The Annals of Statistics, 43(4):1716 – 1741.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423.

6

	Decision trees
	Training with decision trees
	Impurity functions
	Random forests

