
Boosting algorithms

Vincent Divol

These notes are based on Schapire and Freund’s excellent textbook on boosting methods
[Schapire and Freund, 2012].

1 What is boosting?

How can a crowd of uninformed people take good decisions by working collectively? The simplest
instance of such a phenomenon arises when n “uninformed” people answer a question. Assum-
ing that they perform slightly better than random (say they answer correctly with probability
55%) and that their answers are independent, then the correct answer can be found with high
probability by taking a vote.

Lemma 1.1 (Hoeffding inequality). Let X1, . . . , Xn be independent random variables in [0, 1],
and let An = 1

n

∑n
i=1Xi. Then, for any r > 0,

P(An > E[An] + r) ≤ e−2nr2 . (1)

In our example, we let Xi = 1 if the ith answer is false, and 0 otherwise. Then, the majority
is right if An = 1

n

∑n
i=1Xi is smaller than 1/2, whereas E[An] = 0.45. Therefore,

P(the majority is wrong) = P(An > 1/2) = P(An > E[An] + 0.05) ≤ e−5·10−3n. (2)

For a crowd of n = 1000 people, the probability that the majority is wrong is already extremely
small, smaller than e−5 ≃ 0.6%.

Boosting algorithms aim at aggregating weak classifiers, that act as “rules of thumbs” that
perform slightly better than random, to create a strong classifier with excellent generalization
error. Consider for instance the problem of spam detection. Simple rules of thumbs may consist
in automatically classifying an email as spam if it contains a suspect word such as “Viagra”.
Of course, not all emails containing “Viagra” are spam, but such a rule of thumb will definitely
perform better than random. Other rules of thumb can be defined by creating a list of forbidden
words, or by defining a list of “safe” email addresses. Individually, each rule will only have a
mediocre performance, although we will see how aggregating such rules in a carefully designed
way is enough to obtain a small error.

Formally, consider a training set (X1, Y1), . . . , (Xn, Yn) of n labelled examples, with Xi ∈ X
being an example (e.g. an email) whereas Yi ∈ {−1,+1} is the associated label (e.g. spam or
not spam). We assume that both Xi and Yi are random, and that our training examples are
independent and identically distributed from some (unknown) probability distribution P on
X × {−1,+1}. A classifier is a function h : X → {−1,+1}, whereas its generalization error is
defined as

err(h) = P (h(X) ̸= Y), (3)

that is the generalization error is the probability of making mistakes on new unlabelled data.

1

Boosting algorithms take as input a family H of weak classifiers. Naively, the “best” weak
classifier should be the one that minimizes the training error, defined by

êrr(h) =
1

n

n∑
i=1

1{h(Xi) ̸= Yi}. (4)

In boosting algorithms, the final classifier H is obtained by making many different carefully
selected weak classifiers participate in a vote. That is to say H will take the form of

H(x) = sign

(
T∑
t=1

αtht(x)

)
, (5)

where h1, . . . , hT are the selected weak classifiers and αt is the voting weight assigned to the
classifier ht. When all the weights αt are equal, H(x) will be equal to 1 if the majority of the
ht(x)s are equal to 1, and equal to −1 otherwise. We allow to put higher weights (αt ≫ 1) on
some classifiers in our voting scheme if we believe that they have better accuracy.

If we ask for the best weak classifier repeatedly while using the same dataset, our algorithm
will simply return the same classifier again and again. Thus, a key component of boosting
algorithms consists in weighting the observations of the training set, to signify that making a
mistake on observations with higher weights is more critical. To do so, consider a vector of
weights D = (D(1), . . . , D(n)), with D(i) ≥ 0 and

∑n
i=1D(i) = 1. The D-weighted training

error is defined as

êrrD(h) =
n∑

i=1

D(i)1{h(Xi) ̸= Yi}. (6)

When all the D(i)s are equal to 1/n, the weighted error is equal to the usual training error. We
are now in position to describe a popular boosting algorithm, called AdaBoost.

Algorithm 1 The AdaBoost algorithm

Input: Dataset (X1, Yi), . . . , (Xn, Yn), family of weak classifiers H, number of rounds T
Initialize: D1 = (1/n, . . . , 1/n)
for t = 1, . . . , T do

Choose ht ∈ H that minimizes the weighted error

êrrDt(h) =
n∑

i=1

Dt(i)1{h(Xi) ̸= Yi}. (7)

Let εt = êrrDt(ht) and αt =
1
2 log

(
1−εt
εt

)
.

Let

∀i = 1, . . . , n, Dt+1(i) =
Dt(i)

Zt
·

{
eαt if ht(Xi) ̸= Yi,

e−αt if ht(Xi) = Yi,
(8)

where Zt =
∑n

i=1Dt+1(i) is a normalization constant.
end for

Output: H(x) = sign
(∑T

t=1 αtht(x)
)
.

Several preliminary remarks are in order to understand the intuitive behavior of the Ad-
aBoost algorithm. First, if ht has a small weighted error εt, then αt is large, so that ht will have
a huge voting power in the final vote, which is a desirable property. Second, if ht misclassifies
the ith observation, then Dt+1(i) ≥ Dt(i), so that we put more importance on having the ith

2

observation right on the next round. To put it another way, the reweighting scheme forces us
to find weak classifiers that perform well on hard examples, that is examples on which previous
classifiers tended to make mistakes.

2 AdaBoost’s training error

In this section, we show that the training error êrr(H) of AdaBoost decreases exponentially
fast to 0 with the number of rounds T . Note that, by itself, having a small training error says
nothing about the generalization error, due to overfitting phenomena. We will however explain
in the next section that the generalization error can be equally well controlled.

Theorem 2.1. Let γt =
1
2 − εt be the edge of ht, measuring how much ht performs better than

random (for the weighting scheme Dt). It holds that

êrr(H) ≤
T∏
t=1

√
1− 4γ2t ≤ exp

(
−2

T∑
t=1

γ2t

)
. (9)

Proof. Let F (x) =
∑T

t=1 αtht(x). Note that we can write Dt+1(i) =
Dt(i)e−αtYiht(Xi)

Zt
. Therefore,

Dt+1(i) = D1(i)×
e−α1Yih1(Xi)

Z1
× · · · × e−αTYihT (Xi)

ZT

=
1

n

exp(−YiF (Xi))∏T
t=1 Zt

.

Remark that we can rewrite the condition H(x) = y as yF (x) > 0. Furthermore, the 0 − 1
function t 7→ 1{t > 0} is smaller than the function t 7→ e−t. This implies that the following
inequality holds:

1{H(Xi) ̸= Yi} ≤ exp(−YiF (Xi)). (10)

Therefore,

êrr(H) =
1

n

n∑
i=1

1{H(Xi) ̸= Yi}

≤ 1

n

n∑
i=1

exp(−YiF (Xi)) =
n∑

i=1

DT+1(i)
T∏
t=1

Zt =
T∏
t=1

Zt,

where we use that
∑n

i=1DT+1(i) = 1. Furthermore,

Zt =
∑

i: Yi=ht(Xi)

Dt(i)e
−αt +

∑
i: Yi ̸=ht(Xi)

Dt(i)e
αt

= e−αt(1− εt) + eαtεt

= e−αt

(
1

2
+ γt

)
+ eαt

(
1

2
− γt

)
=
√
1− 4γ2t .

The second inequality is obtained using that 1− x ≤ e−x for x ≥ 0.

This control on the training error becomes useful only when the edges γt are large enough,
that is all the hts perform substantively better than random. For instance, if γt ≥ 10% for all t,
then the inequality gives êrr(H) ≤ (0.98)T : the training error decreases exponentially fast to 0.

3

θ

θ

Figure 1: A dataset of points in R2, labelled either as crosses, or circles. The set of linear
classifiers linearly separates this dataset, with margin θ given by the distance between the best
separating line and the dataset.

When can we ensure such uniform control over the edges? Intuitively, this is possible
when the family H of weak classifiers is rich enough. Let Conv(H) = {

∑
j ajhj : hj ∈ H, aj ≥

0,
∑

j aj = 1} be the convex hull of H. A way to ensure that H has a high enough complexity
is to guarantee the existence of some number θ > 0, called a margin, such that we can find
F ∈ Conv(H) with YiF (Xi) ≥ θ for all i = 1, . . . , n. Intuitively, the margin θ measures the
confidence of our classification: our rule is to classify Xi as +1 if F (Xi) > 0, but a number
F (Xi) very close to 0 suggests that a small perturbation of Xi can flip our classification from
+1 to −1, whereas such a phenomenon is forbidden by the margin hypothesis. If such an
assumption is satisfied, we say that H is able to linearly separate the observations with margin
θ. See Figure 1 for an example.

If this assumption is satisfied, then all the edges γt are larger than θ/2, ensuring that

êrr(H) ≤ e−
θ2T
2 . Let us prove this fact. Let D = Dt be the weights over the observations

X1, . . . , Xn at the round t. Let F =
∑

j ajhj be the classifier associated with the observations
(X1, Y1), . . . , (Xn, Yn), so that

∑
j

ajED[Yihj(Xi)] = ED

∑
j

ajhj(Xi)

 ≥ θ. (11)

As this average (over the weights ajs) is larger than θ, there exists in particular some hj with
ED[Yihj(Xi)] ≥ θ. But, a simple computation gives

ED[Yihj(Xi)] = 1− 2êrrD(hj),

yielding that êrrD(hj) ≤ 1
2 −

θ
2 . In particular, the best weak classifier in H has an error smaller

than this quantity, and all the edges γt are at least θ/2.

4

3 AdaBoost’s generalization error

The goal of a machine learning algorithm is not to minimize the training error, but to minimize
the generalization error, that is the probability of misclassifying a new unlabelled observation.
Recall that we assumed that our training dataset is made of i.i.d. observations from some law
P , and that the unlabelled data follows the same distribution. Therefore, the expectation of the
training error (with respect to the training dataset) is equal to the generalization error. More
precisely, if h is some fixed classifier and Ui = 1{Yi ̸= h(Xi)}, then E[Ui] = P (Y ̸= h(X)) =
err(h). In particular, by Hoeffding’s inequality, the generalization error of a fixed classifier h
cannot be far from the generalization error:

err(h) ≤ êrr(h) +

√
log(1/δ)

2n
(12)

with probability at least 1− δ (this is obtained by playing around with the inequality (1)).
However, this line of reasoning only holds when h is fixed and was picked independently from

the set of observations! Otherwise, the classifier h becomes itself random (as it depends on the
random observations (Xi, Yi)), and we cannot conclude in such a simple fashion. Assume that
we pick a classifier H (by looking at the observations) from a family C of classifiers. Then, we
can write

err(H) = êrr(H) + (err(H)− êrr(H))

≤ êrr(H) + sup
F∈C

(err(F)− êrr(F)). (13)

The second term supF∈C(err(F) − êrr(F)) can be bounded with probability at least 1 − δ by

2Rn(C) +
√

2 log(1/δ)
n , where Rn(C) is the Rademacher complexity of C.

Definition 3.1. The Rademacher complexity of a family of classifiers C is defined as

Rn(C) = EP,ε

[
sup
F∈C

∣∣∣∣∣ 1n
n∑

i=1

εiF (Xi)

∣∣∣∣∣
]
, (14)

where the εis are i.i.d. ±1 signs, equal to +1 with probability 1/2, and −1 with probability 1/2.

The quantity 1
n

∑n
i=1 εiF (Xi) is equal to the correlation between the random sign vector

(ε1, . . . , εn) and the classification made by F , (F (X1), . . . , F (Xn)). Therefore, the Rademacher
complexity measures how well it is possible, given our observations X1, . . . , Xn, to label the
observations with any given combination of random signs. If a perfect match is always possible,
then our model C can learn “garbage data”, where there is no discernible pattern in the labelling.
This should definitely be a red flag, indicating that the model C is too complex. Such a situation
exactly corresponds to the Rademacher complexity attaining its maximal value of Rn(C) = 1.
When C has a moderate complexity, we however expect Rn(C) to decay at rate 1/

√
n. This is

for instance the case when C is finite and made of k classifiers, where it holds that

Rn(C) ≤
√

2 log k

n
. (15)

All in all, we obtain that with probability at least 1− δ,

err(H) ≤ êrr(H) + 2Rn(C) +
√

2 log(1/δ)

n
. (16)

5

Figure 2: Theoretical behavior of AdaBoost’s overfit without margin assumptions. As the
number of rounds T increases, the training error decreases exponentially, but the generalization
error increases as

√
T/n for large T .

This inequality explains the bias-fluctuations trade-off in machine learning. If one tries to
fit a simple model C to our dataset, then even the best classifier H in C will make many mistakes
when classifying the training set, so that êrr(H) is large. We then say that the model C has a
large bias and is underfitting. On the other hand, if the model C is too complex (that is very
large), we expect the first term êrr(H) to be small. However, the Rademacher complexity of C
will blow up, so that the generalization error err(H) will still be large: we say that there are
large fluctuations (or variance) and that the model C is overfitting.

Let us return to the analysis of the AdaBoost algorithm. For the sake of simplicity, we will
assume for the remainder of this section that H is finite and contains k classifier (although other
methods exist to bound the Rademacher complexity when H is infinite). After T rounds of the
algorithm, the final classifier will belong to the class CT of classifiers of the form

x 7→ sign

(
T∑
t=1

αtht(x)

)
, α1, . . . , αT ∈ R, h1, . . . , hT ∈ H. (17)

It can be proven that the Rademacher complexity of the class CT is small. Namely, we have

Rn(CT) ≤
√

32T log(enk/T)

n
. (18)

Roughly speaking, the Rademacher complexity behaves as if CT were a finite model of size of
order (nk/T)T (see (15)). Discarding the logarithmic factors and the constants, and assuming
that H is able to linearly separate the observations with margin θ, we obtain in total that, with
probability at least 1− δ,

err(H) ≤ êrr(H) +

√
32T log(enk/T)

n
++

√
2 log(1/δ)

n

≲ e−
θ2T
2 +

√
T

n
.

(19)

This inequality suggests the following qualitative behavior. As the number T of rounds of
AdaBoost increases, the training error decreases exponentially to 0. When T stays moderately

6

Figure 3: The fetus’ health dataset, taken from [Ayres-de Campos et al., 2000], contains differ-
ent features describing a fetus, with the goal of predicting if the fetus is healthy or not. The
AdaBoost algorithm was trained on this dataset, using stumps as base classifiers, which are
classifiers with linear boundaries of the form {x : xj ≤ c} for some feature j and threshold c.
Training and generalization errors are displayed as a function of the number of rounds (log-scale).
As expected, the training error decreases exponentially, reaching zero after a couple hundred
rounds, whereas the generalization error starts increasing after roughly 50 rounds, going from
13% to 17.5%.

small, this leads to a good generalization error. However, when T gets too large, the factor√
T
n blows up, and AdaBoost starts overfitting. Illustrations in theory and in practice of this

behavior are shown in Figure 2 and Figure 3.

4 Avoiding overfitting under a margin hypothesis

The example shown above shows that the analysis made in the previous section does capture
AdaBoost’s behavior on some examples. See however in Figure 4 how AdaBoost behaves on a
task of classification of raisin species (taken from the UCI ML Repository [Dua and Graff, 2017]).

As expected, the training error decreases exponentially, until reaching zero after approxi-
mately 103 rounds. More surprisingly, the generalization error keeps decreasing as the number
of rounds T gets larger! This is in contradiction with the intuition built in the previous section,
based on an analysis of the Rademacher complexityof the model CT : even when we fit a very
complex model, consisting of linear combinations of thousands of base classifiers, there is no
overfitting. First, remark that for T larger than 103, the training error of H is equal to 0, and
there are likely many different classifiers in CT that reach 0 training error. However, AdaBoost
does not simply pick “at random” one such minimizer, but selects a very special one.

Remember that H can be written as H(x) = sign(F (x)) where F (x) =
∑T

t=1 αtht(x). Define

at =
αt∑T
t=1 αt

(20)

and f(x) =
∑T

t=1 atht(x), so that we may also write H(x) = sign(f(x)). As
∑T

t=1 at = 1, the

7

Figure 4: Seven different features describing the geometry of raisin seeds are collected, with the
aim of classifying the seeds as belonging either to the “Kecimen” or “Basin” species. The Ad-
aBoost algorithm was trained using stumps as base classifiers. Contrarily to what was predicted
in Section 3, the generalization error does not increase with the number of rounds, but keeps
decreasing even when the training error has reached zero.

number f(x) is between −1 and +1, whereas the classification will be equal to +1 as long as
f(x) > 0, and −1 otherwise. We think of the absolute value |f(x)| as the confidence of the
classifier in its prediction: if |f(x)| is close to 0, then a small perturbation of the input x will
be enough to switch its sign, changing the classification. In this situation, the classifier is not
“sure” of how it should classify x. See in Figure 5 the distribution of the margins |f(Xi)| of the
observations Xi in the training set for different numbers of rounds.

As seen on the picture, as the number of rounds increases, and although the training error
is always zero, the confidence of H in its classifications still increases. Let us explain this
phenomenon theoretically. Fix a margin θ ∈ [0, 1]. Note that f(Xi)Yi > θ means exactly that
(i) Yi and f(Xi) have the same sign, so that Xi is well classified, and (ii) |f(Xi)| > θ, so that the
confidence in the classification is at least θ. Let N̂θ(f) be the proportion of training examples
with Yif(Xi) ≤ θ. For instance, in the previous example, for T = 5, N̂0.5(f) is approximately
equal to 0.10. Introduce the function ϕ with

ϕ(u) =

1 if u ≤ 0

1− u/θ if 0 ≤ u ≤ θ

0 if u ≥ θ.

(21)

Remark that for any classifier of the form H(x) = sign(f(x)),

err(H) ≤ EP [ϕ(Y f(X))] (22)

and
1

n

n∑
i=1

ϕ(Yif(Xi)) ≤ N̂θ(f). (23)

For the AdaBoost algorithm, f belongs to Conv(H), the convex hull of the classifiers in H.

8

Figure 5: The margin distribution for different number of rounds. For a given r-value, the y-
value corresponds to the proportion of observations Xi with margin smaller than r. For instance,
for T = 5, there are roughly 10% of observation points that are classified with margin smaller
than 0.5.

Therefore,

err(H) ≤ EP [ϕ(Y f(X))] =
1

n

n∑
i=1

ϕ(Yif(Xi)) +

(
EP [ϕ(Y f(X))]− 1

n

n∑
i=1

ϕ(Yif(Xi))

)

≤ N̂θ(f) + sup
g∈Conv(H)

(
EP [ϕ(Y g(X))]− 1

n

n∑
i=1

ϕ(Yig(Xi))

)
.

By using similar mathematical results than in the previous section, we know that with probability
1− δ,

sup
g∈Conv(H)

(
EP [ϕ(Y g(X))]− 1

n

n∑
i=1

ϕ(Yig(Xi))

)
≤ 2Rn(ϕ ◦ Conv(H)) +

√
2 log(2/δ)

n
, (24)

where ϕ ◦ Conv(H) is the set of functions of the form ϕ ◦ g for some g ∈ Conv(H). There are
two known facts on the Rademacher complexity:

1. Rn(ϕ ◦ Conv(H)) ≤ Lip(ϕ)Rn(Conv(cH)), where Lip(ϕ) is the Lipschitz constant of ϕ,
here equal to 1/θ;

2. Rn(Conv(cH)) = Rn(H).

All in all, we obtain that for a fixed θ > 0, and with probability at least 1− δ,

err(H) ≤ N̂θ(f) +
2

θ
Rn(H) +

√
2 log(2/δ)

n
. (25)

When H is finite, of size k, we know that the Rademacher complexity is bounded by
√

2 log k
n .

Furthermore, a small modification of Theorem 2.1 shows that, if H linearly separates the obser-

vations with maring θ, then êrr(H) ≤ 2e−
θ2T
2 , so that

err(H) ≤ 2e−
θ2T
2 +

2

θ

√
2 log k

n
+

√
2 log(2/δ)

n
. (26)

9

Let us compare this bound with the one obtained in (19): the two are extremely similar, with

the only distinction that the dependency in
√

T
n has been replaced by a dependency in 1

θ

√
1
n .

Therefore, under a margin hypothesis, the generalization error of AdaBoost does not
increase with the number of rounds T .

References

[Ayres-de Campos et al., 2000] Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de
Sa, J., and Pereira-Leite, L. (2000). Sisporto 2.0: a program for automated analysis of
cardiotocograms. Journal of Maternal-Fetal Medicine, 9(5):311–318.

[Dua and Graff, 2017] Dua, D. and Graff, C. (2017). UCI Machine Learning Repository.

[Schapire and Freund, 2012] Schapire, R. E. and Freund, Y. (2012). Boosting: foundations and
algorithms. Adaptive computation and machine learning series. MIT Press, Cambridge, MA.

10

	What is boosting?
	AdaBoost's training error
	AdaBoost's generalization error
	Avoiding overfitting under a margin hypothesis

