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Additional material

• These lecture notes are partly based on Francis Bach’s book Learning
Theory from First Principles [Bach, 2022].

• We also refer to Stephen Boyd and Lieven Vandenberghe’s book Con-
vex optimization [Boyd et al., 2004] for Chapter 2.

• Convergence results on gradient descent and Newton’s method in Chap-
ter 2 are taken from Yurii Nesterov’s Lectures on convex optimiza-
tion [Nesterov, 2018], whereas their stochastic analogues presentend in
Chapter 3 are taken from [Shalev-Shwartz and Ben-David, 2014, Chap-
ter 14]

• A nice ”cheat sheet” presenting all convergence results for (stochastic)
gradient descent has been written by Robert M. Gower [Gower, 2018].

• A great reference to learn about kernels is Learning with kernels by
Bernhard Schölkopf and Alexander Smola [Smola and Schölkopf, 1998].

• We refer to the Lectures on the Nearest Neighbor Method by
Gérard Biau and Luc Devroye for k-NN methods presented in Chapter
5 [Biau and Devroye, 2015].

• A great tutorial on spectral clustering (presented in Chapter 6) has
been written by Ulrike von Luxburg [von Luxburg, 2007].
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Chapter 1

Empirical risk minimization

The problem of supervised learning can be expressed in the following way:
we are given a family of inputs (x1, . . . , xn) on a set X , and associated outputs
(y1, . . . , yn) on a set Y . Given a new input x ∈ X , can we predict what the
associated output y ∈ Y will be? There are two large families of learning
problems, the case where Y is a finite set (classification task), and the case
where the ouputs yis take continuous values, typically Y = R (regression
task).

Example 1.0.1. .

1. Each input xi is a picture that represents an animal yi. In this case, a
picture xi is represented by the RGB value (Red, Green, Blue) of each
of its pixels, so that X = R3K , where K is a number of pixels. The set
Y is the set of animals that are depicted. This is a classification task.

2. Each input xi is a review of a movie, and yi is the rating associated
with the review. Given a new review x, the goal is to guess if the user
who wrote the review liked the movie (y is high) or disliked it (y is
low). The set of inputs X is the set of texts, whereas y ∈ Y = [0, 1]
represents a grade between 0 and 1. This is a regression task.

3. Each input xi is a patient that is described by different physiological
parameters (including e.g. sex, age, blood pressure, etc.) and a treat-
ment that was given to them, whereas yi is equal to 1 (the patient is
cured) or −1 (the patient is not cured) (Y = {−1, 1}). The goal is then
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8 CHAPTER 1. EMPIRICAL RISK MINIMIZATION

to understand what is the efficiency of different treatments for different
profiles of patients.

Before going further, there is an important question to address, concern-
ing the model assumptions made on the inputs (x1, . . . , xn) and the outputs
(y1, . . . , yn). As it is most often the case in machine learning approaches, we
will assume that both the inputs and the ouputs are random. In particular,
it may be possible that for two inputs xi = xj that are equal, the correspond-
ing outputs yi and yj are different (this for instance makes sense in Example
(3), where different patients having the same profile, given the same treat-
ment, may experience different outcomes). We will moreover always assume
that the pairs ((x1, y1), . . . , (xn, yn)) are independent and identically dis-
tributed (i.i.d.). This is the simplest assumption, that is reasonable in a
large number of cases, although there exist relevant problems where such an
assumption is too strong (e.g. if the observations (xi, yi) arrive in a sequential
manner, it may then be the case that the law of the variable (xi, yi) depends
on the time i at which it was observed).

To distinguish between deterministic variables and random ones, we will
use a bold font to refer to the latter, that is (x,y) is random, whereas
(x, y) is deterministic. The law of the observations (xi,yi) will be denoted
by P , whereas Px is the law of the first marginal xi and Py is the law of the
second marginal yi. Remark that P is a probability measure on the space
X × Y , whereas Px is a probability measure on X and Py is a probability
measure on Y . We will write EP [f(x,y)] for the expectation of some function
f : X × Y → R with respect to P , whereas the conditional expectation of
f(x,y) given that x = x is written as EP [f(x,y)|x = x]. We will sometimes
only write E instead of EP when it is clear what the underlying law is.

1.1 Risks and losses

How do we measure the quality of a prediction?

The term ”predicting” is here rather vague, and the data scientist may want
to give it different meanings depending on the context. For instance, in
binary classification (Y = {−1, 1}), a possible goal is to minimize the number
of misclassifications on average. However, the two ouputs −1 and 1 may not
play a symmetrical role, and we may want to favorize predictions that make
very few mistakes when choosing −1, at the price of making more mistakes
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when choosing 1. For example, in medical settings, the output y = −1 can
represent the fact that the patient x is sick and deserves further treatment,
while y = 1 means that the patient x is healthy. Then, it is a more serious
mistake to predict that y = 1 when in fact y = −1 than the opposite, and
we want to take this into account when assessing the quality of a predictor.

The problem is even more striking when the ouput space Y is multidi-
mensional, say Y = Rd. In that case, possible ways of measuring how a
prediction y′ = (y′1, . . . , y

′
d) is close to the output y = (y1, . . . , yd) include:

• the L∞-norm: ‖y′ − y‖∞ := maxj=1,...,d |y′j − yj|,

• the Lp-norm ‖y′ − y‖p := (
∑d

j=1 |y′j − yj|p)1/p,

• the weighted Lp-norm ‖y′− y‖p,w := (
∑d

j=1 wj|y′j − yj|p)1/p, where w =
(w1, . . . , wd) is a vector of positive weights,

• the dot product y′ · y =
∑d

j=1 y
′
jyj.

There are no ”better” choices of distances among the one listed above, they
each represent a different way of measuring how two points in the output
space Y are similar. For instance, choosing the `1-norm instead of the `2-
norm indicates that we want to penalize less the fact that a huge error was
made on one of the entries y′j of the prediction, which might be a desirable
feature in some problems.

More generally, we will work with a general loss function ` on the set of
outputs.

Definition 1.1.1 (Loss function). A loss function is a nonnegative func-
tion ` : Y × Y → [0,+∞).

The goal is then to find a function f : X → Y such that `(f(x),y) is small
on new samples ((x′1,y

′
1), . . . , (x′n′ ,y

′
n′)), that we call the testing sample. We

will here always assume that the testing sample is also i.i.d. of law P 1. The
goal is then to minimize the average loss on the testing sample, that we call
the expected risk or the test error.

1In many practical situations, the law of the testing sample is actually different from
the law P on which the predictor was trained. This situation is referred to as covariate
shift in the literature and requires the development of specific techniques. This issue will
never be addressed in these notes.
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Definition 1.1.2 (Expected risk). Let P be a probability measure on X ×Y
and ` be a loss function. Given a function f : X → Y, the P -risk of f is
given by

RP (f) := EP [`(y, f(x))]. (1.1)

The best prediction f ?P is the one that minimizes RP (f), and is called the
Bayes predictor. It turns out that we can give an expression of the Bayes
predictor.

Theorem 1.1.3 (Optimality of Bayes predictor). Let P be a probability mea-
sure on X × Y. The function f 7→ RP (f) is minimized at f ?P that is defined
by

f ?P (x) ∈ arg min
z∈Y

EP [`(y, z)|x = x]. (1.2)

Proof. Let f : X → Y be a function. Define the function Ψ : (x, z) ∈
X×Y 7→ EP [`(y, z)|x = x]. By definition, we have the equality Ψ(x, f ?P (x)) =
minz∈Y Ψ(x, z). By the law of total expectation, we obtain

RP (f) = EP [`(y, f(x))] = EP [Ψ(x, f(x))] ≥ EP [Ψ(x, f ?P (x))] = RP (f ?P ).
(1.3)

As this hold for every function f , this implies the conclusion.

Let us consider concrete examples of losses ` and associated Bayes pre-
dictors.

Example 1.1.4. .

• Consider the problem of binary classification (Y = {−1, 1}) with the
loss `(y, y′) = 1{y 6= y′}. Then, EP [`(y, 1)|x = x] = P (y = 1|x =
x). We call this quantity the regression function η(x). We have
EP [`(y,−1)|x = x] = 1− η(x). Therefore,

f ?P (x) =

{
1 if η(x) > 1/2,

−1 otherwise.
(1.4)

In other words, the Bayes predictor follows the following intuitive rule:
if the probability of observing the output y = 1 given that x = x is
larger than 1/2, then we predict 1. Otherwise, we predict −1.
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• Let Y = R and let `(y, y′) = |y − y′|2. Remark that the function
z 7→ E[(a − z)2] is minimized at z = E[a]. This implies that the
function z 7→ EP [`(y, z)|x = x] = EP [|y − z|2|x = x] is minimized for
z = EP [y|x = x]. Therefore, the Bayes predictor is in this case given
by the conditional expectation

f ?P (x) = EP [y|x = x]. (1.5)

1.2 Empirical risk

If the Bayes predictor is indeed the optimal one, it has a major drawback:
computing it requires to know what the law of the sample P is! In practice,
we only have access to the training sample ((x1,y1), . . . , (xn,yn)), and P is
unknown. We cannot therefore use the Bayes predictor, and our goal will be
to design predictors f that can be computed based on the observations, and
that will (hopefully) behave almost as well as the Bayes predictor.

A powerful method to do so consists in minimizing the empirical risk.

Definition 1.2.1 (Empirical risk). Let (x1,y1), . . . , (xn,yn) be a training
sample from law P and ` be a loss function. The empirical risk of the
sample is given by

f 7→ Rn(f) :=
1

n

n∑
i=1

`(yi, f(xi)). (1.6)

The law of large number indicates that Rn(f) ' RP (f) when n is very
large. Therefore, one may expect that minimizing Rn is a good strategy to
build a predictor with small P -risk. There is however a caveat: for most losses
`, one can always find many functions f such that Rn(f) = 0, some of them
being very irregular. For instance, in a regression setting with X = Y = R
and `(y, y′) = |y − y′|, there are infinitely many functions (continuous or
discontinuous) such that f(xi) = yi, and Rn(f) = 0 for all such functions.
Such functions f will then behave badly on new observations (x,y) sampled
according to P : the risk RP (f) will be large although Rn(f) = 0.

This minimizing strategy must therefore be improved. An idea consists in
minimizing Rn over a restricted class of functions F , that will encode some
regularity that we expect the Bayes predictor to have.
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Definition 1.2.2 (Empirical risk minimizer). Let (x1,y1), . . . , (xn,yn) be
a training sample from law P and ` be a loss function. Let F be a class
of functions from X to Y, that we also call a model. An empirical risk
minimizer f̂F is any function in F that attains the minimum

min
f∈F
Rn(f). (1.7)

There is a crucial element that needs to be directly mentioned: the com-
putation of the empirical risk minimizer requires the minimization of a po-
tentially complicated functional on an arbitrary set F . This problem is in
general untractable, and we will address in Chapters 2 and 3 how to solve it
in the case where the loss ` is convex. There are however some specific ex-
amples where no optimization procedures are required, and an explicit form
of the solution exists, as in the following example.

Example 1.2.3 (Linear regression). Consider the regression problem on Rd

with the quadratic loss (that is X = Rd, Y = R, and `(y, y′) = |y − y′|2). In
this setting, a popular choice is to consider the class Flin of linear predictors
of the form fθ : x 7→ θTx. The empirical risk is then given by

Rn(fθ) =
1

n

n∑
i=1

|yi − fθ(xi)|2 =
1

n

n∑
i=1

|yi − θTxi|2

=
1

n
‖Y −Xθ‖2,

where

Y =

y1
...

yn

 and X =

x1
...

xn

 .

In this case, the empirical risk minimizer f̂Flin
is given by a linear regression.

We may also further restrict the model by considering only vectors θ having
a small `2-norm (ridge regression) or a small `1-norm (lasso regression).

Decomposition of the empirical risk: underfitting and overfit-
ting

Let us analyze the performance of an empirical risk minimizer. LetR?
P :=

minf RP (f) = RP (f ?P ). We want to understand when the risk of f̂F is not
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Figure 1.1: Decomposition of the excess risk RP (f̂P ) − R(f ?P ) into the ap-

proximation errorRP (f ?F)−R(f ?P ) and the estimation errorRP (f̂F)−R(f ?F).

much larger than R?
P , that is we want to bound the excess risk

RP (f̂F)−R?
P . (1.8)

The excess risk can be decomposed into

RP (f̂F)−R?
P = (RP (f̂F)− inf

f∈F
RP (f))︸ ︷︷ ︸

estimation error

+ ( inf
f∈F
RP (f)−R∗P )︸ ︷︷ ︸

approximation error

. (1.9)

Remark first that the two error terms are nonnegative.

• The approximation error inff∈F RP (f)−R∗P is a deterministic quan-
tity (it does not depend on the observations) that measures how far the
best predictor on F is from the best predictor (the Bayes predictor).
The larger F is, the smaller this error becomes.

• It is less immediate to understand how the estimation errorRP (f̂F)−
inff∈F RP (f) behaves. Assume that the infimum inff∈F RP (f) is at-
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tained at some function f ?F . We can then write

RP (f̂F)− inf
f∈F
RP (f) = RP (f̂F)−RP (f ?F)

= (RP (f̂F)−Rn(f̂F)) + (Rn(f̂F)−Rn(f ?F)) + (Rn(f ?F)−RP (f ?F))

≤ (RP (f̂F)−Rn(f̂F)) + 0 + (Rn(f ?F)−RP (f ?F))

≤ sup
f∈F

(RP (f)−Rn(f)) + (Rn(f ?F)−RP (f ?F)),

(1.10)

where the first inequality follows from the fact that f̂F minimizes Rn

on F by definition, so that Rn(f̂F) ≤ Rn(f ?F). If we believe that this
inequality is tight (and it is in many cases), then the estimation error
is linked to the quantity supf∈F(RP (f) −Rn(f)), that is the uniform
deviation between the empirical risk Rn and its expectation RP on the
class F . This quantity increases with the size of F and decreases with
the number of observations n.

Example 1.2.4 (Polynomial regression). Let X = [0, 1], Y = R and ` be the
square loss. Let Fd be the set of polynomials of degree d and let f̂d := f̂Fd .

We test the performance of the estimator f̂d on the Real estate valuation data
set [Yeh and Hsu, 2018] (taken from the UCI Machine Learning Repository).
On this dataset, the goal is to predict the price y of a house based on several
features (coordinates, house age, number of nearby convenience stores, etc.).
For visualization sake, we consider a single feature x representing the house
age and compute the predictors f̂d for d ranging from 1 to 10 (see Figure 1.2).
We observe the two predicted regimes. For d = 1, the model is too simple and
both the empirical risk Rn(f̂1) and the risk RP (f̂1) (that is approximated by
the empirical risk on the testing sample) are large: the model is underfitting.
For d = 10, the empirical risk becomes small, but the risk RP (f̂10) is really
large: our model is too complicated and we are overfitting.

We have discovered a fundamental phenomenon: the excess risk of an
empirical risk minimizer is driven by two contrary forces. The first one is
the approximation error, that measures how far the model F is close from
”the truth”, and will be large if our model is overly simplistic, a regime that
we call underfitting. The second one is the estimation error, that measures
how the set of observations (y1, f(x1)), . . . , (yn, f(xn)) is able to capture the
behavior of the expectation EP [`(y, f(x))] over all functions F . If F is very
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Figure 1.2: Left: linear predictor f̂1 (blue), quadratic predictor f̂2 (orange)
and predictor of degree 10 (green). Right: Empirical riskRn(f̂d) as a function
of d (in blue) and average risk of f̂d on the testing sample (in orange). As
expected, the empirical risk Rn(f̂d) is a nonincreasing function of d.

large, then there will typically be many different functions with very small
empirical risk (as in Example 1.2.4), so that the minimizer f̂P might be very
different from f ?P . We call this regime overfitting.

1.3 Bound on the estimation error in bi-

nary classification

We focus in this section on the classification task Y = {−1, 1} with the 0− 1
loss `(y, y′) = 1{y 6= y′}. Our aim is to understand how the estimation
error RP (f̂F)− inff∈F RP (f) scales with F . We first consider the case where
the set F of predictors is finite, and then consider the more delicate case of
infinite classes of predictors F by introducing the concept of VC dimension.

1.3.1 Finite number of predictors

Assume first that the set F = {f1, . . . , fk} is finite. The estimation error is
bounded using this general inequality.

Theorem 1.3.1 (Maximal inequality). Let z1, . . . , zk be real valued random
variables such that there exists a constant σ > 0 with E[eλzj ] ≤ eλ

2σ2/2 for
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every λ > 0. Then,
E[ max

j=1,...,k
zj] ≤ σ

√
2 log k. (1.11)

Proof. A first (naive) idea to bound the maximum of a collection of nonneg-
ative numbers (aj) consists in using that

max
j=1,...,k

aj ≤
k∑
j=1

aj. (1.12)

Of course, this bound is often very bad. However, using (1.12) makes sense
if the maximum of the ajs (say aj0) is much larger than the other ones: in
that case, the sum is roughly equal to the max.

We will enforce this situation by replacing each aj by exp(λaj) for some
parameter λ > 0. If λ is very large, then indeed exp(λaj0) is much larger
than the other values exp(λaj), and therefore the bound

max
j=1,...,k

eλaj ≤
k∑
j=1

eλaj (1.13)

becomes a much more reasonable one. Another way of writing this equation
is the following:

max
j=1...k

aj ≤
1

λ
log

(
k∑
j=1

eλaj

)
. (1.14)

Let us now fix aj = zj. We obtain

E[ max
j=1...k

zj] ≤ E

[
1

λ
log

(
k∑
j=1

eλzj

)]
. (1.15)

We are now in position to use Jensen’s inequality.

Lemma 1.3.2 (Jensen’s inequality). Let x be a real valued random variable
and ϕ : R→ R be a convex function. Then,

ϕ(E[x]) ≤ E[ϕ(x)]. (1.16)

Applying Jensen’s inequality to ϕ = exp, we obtain

E[ max
j=1...k

zj] ≤
1

λ
log

(
E

[
k∑
j=1

eλzj

])
. (1.17)
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The assumption E[eλzj ] ≤ eλ
2σ2/2 yields

E[ max
j=1...k

zj] ≤
log k

λ
+
λσ2

2
. (1.18)

We choose λ > 0 to minimize this expression: the optimal value is λ =√
2 log k/σ and we obtain the final bound.

Let us now turn to the quantity E[RP (f̂F) − inff∈F RP (f)]. According
to the inequality (1.10), it is enough to bound

E
[
sup
f∈F

(RP (f)−Rn(f)) + (Rn(f ?F)−RP (f ?F))

]
= E[ max

j=1,...,k
(RP (fj)−Rn(fj))] + E

[
1

n

n∑
i=1

1{yi 6= f ?P (xi)}

]
− P(y 6= f ?P (x))

= E[ max
j=1,...,k

(RP (fj)−Rn(fj))].

Let us apply the maximal inequality to the random variables zj = RP (fj)−
Rn(fj) for j = 1, . . . , k. We have

RP (fj)−Rn(fj) = P(fj(x) 6= y)− 1

n

n∑
i=1

1{fj(xi) 6= yi}. (1.19)

The independence of the observations (xi,yi) yields

E[eλ(RP (fj)−Rn(fj))] =
n∏
i=1

E[e
λ
n

(P(fj(x)6=y)−1{fj(xi)6=yi})]. (1.20)

Let pj = P(fj(xi) 6= yi). Then,

E[e
λ
n

(pj−1{fj(xi)6=yi})] = pje
−λ
n

(1−pj) + (1− pj)e
λ
n
pj . (1.21)

The maximum of this quantity is obtained at pj = 1/2, so that

E[e
λ
n

(pj−1{fj(xi) 6=yi})] ≤ e
λ
n + e−

λ
n

2
≤ eλ

2/(2n2), (1.22)

where we use the standard inequality eλ + e−λ ≤ 2eλ
2/2. Therefore, the

random variable zjs satisfy the condition of Theorem 1.3.1 with σ = 1/
√
n.

We thus obtain the following result.
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Theorem 1.3.3 (Error bound in expectation on the estimation error in
binary classification: finite case). Assume that F contains k elements and
that ` is the 0− 1 loss. Then

E[RP (f̂F)− inf
f∈F
RP (f)] ≤ E[sup

f∈F
(RP (f)−Rn(f))] ≤

√
2 log k

n
. (1.23)

By the central limit theorem, we expect the fluctuations of Rn(f) around
RP (f) to be of order 1/

√
n. Theorem 1.3.3 asserts that the uniform devia-

tions of Rn(f) over a family of k functions f are also of order 1/
√
n.

1.3.2 Vapnik-Chervonenkis dimension

The left hand side of Theorem 1.3.3 diverges as the size k of the class F
of predictors grow (although at a slow

√
log k rate). Does this mean that

everything is hopeless when F is infinite and that we should stick with a
finite set F in practice? Hopefully not! Indeed, in many situations, one
chooses F to be some infinite ”well-behaved” family. This is for instance
the case for linear regression, where the set of predictors is the (infinite)
set Flin = {x 7→ xT θ, θ ∈ Rd}. For the classification problem, it turns
out the size of the set F is not a good measure of its complexity. Rather,
the ”effective” size of a set F is measured by the number of classifications
(f(x1), . . . , f(xn)) over all f ∈ F .

Let us first remark that, even if F is infinite, then the set of possible
classifications CF(x1, . . . ,xn) := {(f(x1), . . . , f(xn)), f ∈ F} is always finite,
and of size at most 2n (each f(xi) is equal to ±1). Using a technical tool
called symmetrization, one can show that one can indeed replace the size of
F in Theorem 1.3.3 by the size of the classification set CF(x1, . . . ,xn).

Lemma 1.3.4. Let NF(x1, . . . ,xn) be the size of the set CF(x1, . . . ,xn).
Then,

E[sup
f∈F

(RP (f)−Rn(f))] ≤ 2E

[√
2 logNF(x1, . . . ,xn)

n

]
. (1.24)

For many different examples, the quantityNF(x1, . . . ,xn) is much smaller
than the maximum possible value 2n, making inequality (1.24) non trivial.
Consider for instance the set F0 = {x 7→ 1{x(1) ≥ a}, a ∈ R}. Then, the
set CF0(x1, . . . ,xn) contains at most n + 1 elements (see Figure 1.3). We
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Figure 1.3: Given n points x1, . . . , xn in Rd, the number NF0(x1, . . . , xn) of
classifications using a classifier f ∈ F0 is at most n + 1. Indeed, if we order
the points such that their first coordinates are in increasing order x

(1)
1 ≤

x
(1)
2 ≤ · · · ≤ x

(1)
n , then choosing a classifier in F0 amounts to choosing the

largest index which will be classified as −1, and there are n+ 1 such indices.



20 CHAPTER 1. EMPIRICAL RISK MINIMIZATION

therefore directly obtain a bound of order
√

log n/n in this case, which is
comparable to the bound that we obtained in the previous section (Theorem
1.3.3), although F0 is infinite.

For general sets F , bounding directly NF(x1, . . . ,xn) is delicate, and
there are even certain values of n for which finding a good bound is hopeless.
Indeed, assume that for every x1, . . . , xn ∈ X and every y1, . . . , yn ∈ {0, 1},
one can find a function f ∈ F with f(xi) = yi for i = 1, . . . , n. Then, the
empirical risk Rn(f̂F) = minf∈F

1
n

∑n
i=1 1{f(xi) 6= yi} is always equal to 0.

We are exactly in the overfitting regime where we expect the estimation error
to be large. In that case, we have NF(x1, . . . ,xn) = 2n, making inequality
(1.24) vacuous.

Definition 1.3.5 (Vapnik-Chervonenkis dimension). Let F be a set of func-
tions from X to {−1, 1}. The Vapnik-Chervonenkis dimension VC(F)
of F is defined as the largest number n such that there exists a configura-
tion x1, . . . , xn ∈ X such that for every possible classifications y1, . . . , yn ∈
{−1, 1}, there exists f ∈ F with f(xi) = yi for i = 1, . . . , n. We set
VC(F) = +∞ if this condition holds for every n ∈ N.

According to the previous discussion, for n ≤ VC(F), the set F is overfit-
ting and there is no hope in bounding the estimation error. However, should
n� VC(F), then the next lemma asserts that NF(x1, . . . , xn) scales at most
polynomially with n. In particular, it is much smaller than 2n!

Lemma 1.3.6 (Sauer’s lemma). Let F be a set with finite VC dimension.
Let n > 2VC(F). Then, for every x1, . . . , xn ∈ X , we have

logNF(x1, . . . , xn) ≤ VC(F) log

(
en

VC(F)

)
. (1.25)

Putting Lemma 1.3.4 and Lemma 1.3.6 together, we obtain the following
result.

Theorem 1.3.7 (Error bound in expectation on the estimation error in
binary classification: with VC dimension). Assume that F has a finite VC
dimension VC(F) and that ` is the 0− 1 loss. Then, for n ≥ 2VC(F),

E[RP (f̂F)− inf
f∈F
RP (f)] ≤ E[sup

f∈F
(RP (f)−Rn(f))]

≤ 2

√
2VC(F)

n
log

(
en

VC(F)

)
.

(1.26)
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Figure 1.4: Let F be the set of linear classifier in R2. There exists a set of
three points, such that linear classifiers can output all possible classifications
(top). However, for all configurations of four points, there exists a classi-
fication that cannot be realized by a linear classifier (bottom). Therefore,
VC(F) = 3.

We conclude by giving some properties of the VC dimension.

Proposition 1.3.8. Let F be a set of functions from X to {−1, 1}.

1. If F is of size k, then VC(F) ≤ log2(k).

2. It X = Rd and F is the set of linear classifiers (that is f ∈ F is of
the form f(x) = 1 if x belongs to some halfspace H and −1 otherwise),
then VC(F) = d+ 1.

3. Let s ≥ 1 be an integer and let Fs be the set of classifiers of the form
maxj=1,...,s fj for some functions fjs in F . Then,

VC(Fs) ≤ VC(F)(2s log2(3s)). (1.27)

Remark 1.3.9. So far, we have only given tools to bound the estimation error
RP (f̂F)−inff∈F RP (f). What about the approximation error inff∈F RP (f)−
R∗P ? This quantity will depend on the regularity of the Bayes predictor f ?P .
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Assume for the sake of simplicity that x is uniform on the cube X = [0, 1]d

and y = f0(x) for some function f0 : X → {−1, 1} (that is there is no noise)
for d ≥ 2. Then, the Bayes risk R?

P is equal to 0 and the approximation error
is equal to

inf
f∈F

P(f(x) 6= f0(x)). (1.28)

This probability represents the area of the cube where f and f0 differ. Let
us consider a toy example to get some intuition. Assume that f0 is equal to
1 on some smooth convex set of volume 1 (see Chapter 2) and −1 outside.
Consider the model Fs consisting of intersections of s halfplanes, that is every
f ∈ Fs is of the form

f(x) =

{
1 if x ∈

⋂s
j=1Hj

−1 otherwise,
(1.29)

where H1, . . . , Hs are s halfplanes. It is then known [Bronstein, 2008] that
the approximation error is bounded by cds

−2/(d−1) for some constant cd. As
expected, this quantity decreases as s gets larger. Using Theorem 1.3.7 and
Proposition 1.3.8, we obtain the following bound on the excess risk (for n
larger than s):

E[RP (f̂F)−R?
P ] ≤ c′d

√
s log(s) log(n)

n
+ cds

−2/(d−1), (1.30)

where c′d is some positive constant. Letting s = n(d−1)/(d+3), we obtain a
bound of order

E[RP (f̂F)−R?
P ] ≤ c′′d log(n)n−2/(d+3) (1.31)

for some other constant c′′d. Note that this rate of convergence is extremely
slow for large d: we refer to this phenomenon as the curse of dimension-
ality.

Appendix

Symmetrization

We provide here a proof of Lemma 1.3.4. This is a delicate proof, that uses a
key technical tool used symmetrization. We call a random sign e that is equal
to +1 with probability 1/2 and −1 with probability 1/2 as a Rademacher
random variable.
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Lemma 1.3.10. Let T be a set and let a1, . . . , an be i.i.d. random variables
in RT : each ai is a function from T to R. We assume that for every t ∈ T ,
E[ai(t)] is finite. Let e1, . . . , en be n i.i.d. Rademacher random variables,
independent from the ais. We have

E[sup
t∈T

1

n

n∑
i=1

(ai(t)− E[ai(t)])] ≤ 2 · E[sup
t∈T

n∑
i=1

eiai(t)]. (1.32)

Proof. We introduce a′1, . . . , a
′
n an independent copy from a1, . . . , an. The

random vectors ai−a′i are independent and symmetric, such that a′i−ai has
the same law as ai − a′i. One can check that ai − a′i has the same law as
ei(ai − a′i). Therefore,

E[sup
t∈T

1

n

n∑
i=1

(ai(t)− E[ai(t)])] = E[sup
t∈T

1

n

n∑
i=1

(ai(t)− E[a′i(t)])]

= E[sup
t∈T

E[
1

n

n∑
i=1

(ai(t)− a′i(t))|a1, . . . , an])].

The function z 7→ supt∈t z(t) is convex. Therefore, by Jensen’s inequality,

E[sup
t∈T

1

n

n∑
i=1

(ai(t)− E[ai(t)])] ≤ E[E[sup
t∈T

1

n

n∑
i=1

(ai(t)− a′i(t))]]

= E[sup
t∈T

1

n

n∑
i=1

(ai(t)− a′i(t))]

= E[sup
t∈T

1

n

n∑
i=1

ei(ai(t)− a′i(t))]

= E[sup
t∈T

1

n

n∑
i=1

eiai(t)] + E[sup
t∈T

1

n

n∑
i=1

−eia
′
i(t))]

= 2 · E[sup
t∈T

1

n

n∑
i=1

eiai(t)].

We apply this general inequality with T = F to the random variables
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ai(f) = `01(f(xi),yi) = 1{f(xi) 6= yi} to obtain

E[sup
f∈F

(RP (f)−Rn(f))] ≤ 2 · E[sup
f∈F

1

n

n∑
i=1

ei1{f(xi) 6= yi}]

= 2 · E[ sup
u∈CF (x1,...,xn)

1

n

n∑
i=1

ei1{ui 6= yi}],
(1.33)

where u = (u1, . . . , un) is any element of CF(x1, . . . ,xn), the set of classi-
fications of x1, . . . ,xn using a classifier f ∈ F . Conditionally on the ob-
servations (x1,y1), . . . , (xn,yn), the random variables 1

n

∑n
i=1 ei1{ui 6= yi}

satisfy the assumptions of Theorem 1.3.1 with σ = 1/
√
n. Also, there are

NF(x1, . . . ,xn) such random variables. Then, by applying Theorem 1.3.1
conditionally on the observations (x1,y1), . . . , (xn,yn), we obtain that

E[sup
f∈F

(RP (f)−Rn(f))] ≤ 2 · E

[√
2 logNF(x1, . . . ,xn)

n

]
, (1.34)

that is exactly Lemma 1.3.4.
To summarize, we have used symmetrization to replace a supremum over

an infinite number of random variables (each random variableRP (f)−Rn(f)
are different because RP (f) is a priori different for every function f ∈ F) to
a supremum over only a finite number of CF(x1, . . . ,xn) random variables.



Chapter 2

Convex optimization

2.1 Convexification of the 0− 1 loss

In the previous chapter, we studied in detail the properties of the empirical
risk minimizer f̂F in binary classification. This estimator is defined as the
minimizer of the functional

f ∈ F 7→ 1

n

n∑
i=1

1{yi 6= f(xi)}. (2.1)

This functional is highly discontinuous, and is actually piecewise constant
on each output A(z1, . . . , zn) := {f ∈ F , ∀i = 1, . . . , n, f(xi) = zi} for
z1, . . . , zn ∈ {−1, 1}. The number of such sets is exactly NF(x1, . . . ,xn).
If we believe that Sauer’s lemma is tight (and it is in many cases), then
this number is exponential in the VC dimension. Even for very simple sets,
such as the class of linear classifiers, this number will be very large even
for moderate dimension of the input space X . This computational blow up
shows the impossibility of minimizing (2.1) in many situations.

To overcome this problem, we make a simple remark. The set {−1, 1} is a
subset of R. Therefore, we can consider the classification task as an instance
of a regression task, choose a predictor g : X → R, and obtain a classifier by
letting f = sgn ◦ g, where sgn is the sign function (equal to +1 on [0,+∞)
and to −1 on (−∞, 0)). Minimizing the 0−1 risk of the classifier f = sgn◦g
amounts to minimizing the function

g 7→ EP [1{sgn(g(x)) 6= y}] = EP [1{g(x)y < 0}]. (2.2)

25
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Figure 2.1: Examples and counterexamples of convex sets.

The loss function `(y, y′) = 1{yy′ < 0} is still not continuous, making the
minimization of the empirical risk as difficult as before. However, this loss
can be replaced by other convex losses that are similar to this one. This
process is referred to as the convexification of the loss. We will come back
to this problem in Section 2.5 after introducing the necessary background on
convex optimization.

2.2 Convex functions

We start by recalling some elementary definitions.

Definition 2.2.1 (Convex set). A set A ⊂ Rd is convex if, given two points
x and y in A, the segment joining x and y is included in A:

∀x, y ∈ A, ∀t ∈ [0, 1], tx+ (1− t)y ∈ A. (2.3)

Let A ⊂ RD and let f be a function defined on A. We define the epigraph
of f as

epi(f) := {(x, t) ∈ A× R : f(x) ≥ t}. (2.4)

Definition 2.2.2 (Convex function). Let A be a convex set and let f : A→
R. We say that f is convex if epi(f) ⊂ Rd+1 is convex. Equivalently, f is
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Figure 2.2: The epigraph of a function f (whose graph is displayed in black).

Figure 2.3: Examples of convex functions.
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Figure 2.4: Blue: the chord joining two points of the graph of a convex
function is above the graph. Red: the graph of a function f stays above its
tangent lines.

convex if

∀x, y ∈ A, ∀t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (2.5)

We call A the domain of f , denoted by dom(f).

Intuitively speaking, a function f : Rd → R is convex if, when we let a
bead rolls from a point on the graph of f , the bead always arrives to the
minimum of f (that is the point of lowest altitude). Alternatively, a function
f is convex if a chord joining two points on the graph of f is always ”above”
the graph of f .

A convex function is always continuous on the interior of its domain.
However, it may not be differentiable (take f : x 7→ |x|). If we assume that
it is differentiable, then the differential has to be monotone.

Proposition 2.2.3. Let f be a convex differentiable function.

• If d = 1, then f ′ is nondecreasing.

• If d ≥ 2, then, for all x, y ∈ dom(f), we have

〈∇f(x)−∇f(y), x− y〉 ≥ 0 (2.6)
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and

f(x) ≥ f(y) + 〈∇f(y), x− y〉. (2.7)

Geometrically, this means that a function is convex if its graph is always
above its tangent curves (see Figure 2.2).

What can we say about the second derivative of f (should it exist)? Using
the previous proposition, for d = 1, we should have f ′′ ≥ 0. The analogue of
the second derivative for d ≥ 2 is the Hessian matrix ∇2f . The good notion
of nonnegativity for symmetric matrices is given by the following condition:
for every x ∈ dom(f) and u ∈ Rd, we have u>∇2f(x)u ≥ 0. We then say that
∇2f(x) is positive semi-definite and we write ∇2f(x) < 0. Equivalently, the
eigenvalues of ∇2f(x) are nonnegative. If all the eigenvalues are larger than
some value α, then we write ∇2f(x) < αId. Likewise, if all the eigenvalues
are smaller than some number β, then we write ∇2f(x) 4 βId. These are
respectively equivalent to having u>∇2f(x)u ≥ α‖u‖2 and u>∇2f(x)u ≤
β‖u‖2 for all u ∈ Rd.

Proposition 2.2.4. Assume that f is twice differentiable.

• If d = 1, then f ′′ ≥ 0.

• If d ≥ 2, the Hessian matrix satisfies ∇2f(x) < 0 for every x ∈ dom(f).

Theoretical guarantees for the optimization algorithms presented in the
next sections will hold if the convex function f is sufficiently well-behaved.
A key ingredient is to assert that f is ”really convex” in a quantitative way.

Definition 2.2.5. A real valued convex function f is said to be α-strongly
convex if for all x, y ∈ dom(f) and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− α

2
t(1− t)‖x− y‖2. (2.8)

For example, a linear function f : x 7→ 〈a, x〉 is not strongly convex, as
we have the identity f(tx+(1−t)y) = tf(x)+(1−t)f(y) for such a function.

Proposition 2.2.6. Assume that f is twice differentiable. The following
conditions are equivalent.

• The function f is α-strongly convex.
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• For all x, y ∈ dom(f),

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
α

2
‖x− y‖2. (2.9)

• The function x 7→ f(x)− α
2
‖x‖2 is convex.

• We have ∇2f(x) < αId for every x ∈ dom(f).

Geometrically speaking, a function is α-strongly convex if its graph is
sufficiently curved at every point (more precisely, it has curvature at least 1/α
in all directions). The prototypical example of α-strongly convex function
is the function x 7→ α‖x‖2/2 (this is clear with the third characterization).
Note that strong convexity implies that f has a unique minimizer x?. Indeed,
take x far away from 0 and apply (2.8) to t = 1/‖x‖ and y = 0. We obtain

f(x) ≥ ‖x‖
(
f(x/‖x‖) +

α

2

1

‖x‖

(
1− 1

‖x‖

)
‖x‖2

)
. (2.10)

In particular, f(x) goes to infinity as ‖x‖ goes to infinity. This implies that
the infimum of f is attained on some sufficiently large ball, and by continuity
of f the infimum is attained at at least one point. Given two minimizers x1

and x2, we have, for any t ∈ (0, 1),

min f ≤ f(tx1 + (1− t)x2) ≤ tmin f + (1− t) min f − α

2
t(1− t)‖x1 − x2‖2.

(2.11)
This inequality is possible only if x1 = x2, implying the uniqueness of the
minimizer.

Furthermore, α-strongly convex implies the Polyak–Lojasiewicz condition
(or PL condition). The PL condition asserts that the function f cannot grow
too fast near its minimizer x?: for all x ∈ dom(f),

f(x)− f(x?) ≤ 1

2α
‖∇f(x)‖2. (2.12)

A second condition that ensures good convergence properties is the reg-
ularity of the gradient of f .

Definition 2.2.7. Let f be a real-valued function. We say that f is β-smooth
if it is differentiable and its gradient ∇f is β-Lipschitz:

∀x, y ∈ dom(f), ‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖. (2.13)
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Figure 2.5: The function fα,β is α-strongly convex and β-smooth.

Proposition 2.2.8. Assume that f is twice differentiable. The following
conditions are equivalent.

• The function f is β-smooth.

• For all x, y ∈ dom(f),

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖x− y‖2. (2.14)

• We have ∇2f(x) 4 βId for every x ∈ dom(f).

Geometrically, the β-smoothness condition implies that the graph of the
function is not too curved. The prototypical example of a function that is
both α-strongly convex and β-smooth is the quadratic function

fα,β : x ∈ R2 7→ α

2
x2

1 +
β

2
x2

2. (2.15)

The graph of this function has an elongated bowl shape, with large width
1/α in direction x1, and small width 1/β in direction x2. The Hessian of the
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function is given by

∇2fα,β(x) =

(
α 0
0 β

)
, (2.16)

showing that it is indeed α-strongly convex and β-smooth, see Figure 2.2.

2.3 Gradient descent

We now investigate the problem of finding the minimum of a convex function
f . The most important algorithm to find such a minimum is the gradient
descent algorithm. The general idea is simple: to find the minimum of a
convex function, start at point x, take one step in the direction with largest
negative slope, and repeat the procedure.

Definition 2.3.1. Let f be a real-valued function and let x0 ∈ Rd. Let
T ∈ N be a number of steps and let (st)t=0,...,T be a sequence of step sizes.
The iterates of the gradient descent on f are defined by

xt+1 := xt − st∇f(xt) (2.17)

for t ∈ {0, . . . , T − 1}.

We are now in position to state the main result of this chapter: the iterates
of a gradient descent on a smooth and strongly-convex function converge
towards the minimizer of f at a fast rate.

Proposition 2.3.2 (Convergence of gradient descent for smooth and strongly
convex functions). Let f be a α-strongly convex and β-smooth function de-
fined on Rd. Consider the iterates (xt)t=0,...,T of the gradient descent with
constant step-size s ≤ 1/β and initialization x0. Let x? be the minimizer of
f . Then, we have

f(xT )− f(x?) ≤ (1− αs)T (f(x0)− f(x?))

≤ exp(−αsT )(f(x0)− f(x?)).
(2.18)

We refer to such a rate of convergence as a linear rate of convergence as
log(f(xT )− f(x?)) converges at a linear rate to −∞.



2.3. GRADIENT DESCENT 33

Proof. The characterization of β-smoothness (2.14) implies that

f(xt+1) = f(xt − s∇f(xt)) ≤ f(xt) + 〈∇f(xt),−s∇f(xt)〉+ s2β

2
‖∇f(xt)‖2

= f(xt) + s

(
sβ

2
− 1

)
‖∇f(xt)‖2.

(2.19)

Furthermore, by the PL condition (2.12), we have

‖∇f(xt)‖2 ≥ 2α(f(xt)− f(x?)). (2.20)

Plugging in this inequality in (2.19) yields

f(xt+1)− f(x?) ≤ (f(xt)− f(x?))

(
1 + 2αs

(
sβ

2
− 1

))
. (2.21)

Having s ≤ 1/β implies that 2αs
(
sβ
2
− 1
)
≤ −αs. Iterating this inequality,

we obtain the conclusion.

If we choose the step size s as the largest value allowed in the proposition,
that is s = 1/β, we see that the linear rate of convergence is exactly equal
to κ−1 = α/β. The quantity κ = β/α is called the condition number of
f . This corresponds to an upper bound on the ratio between the largest
eigenvalue of the Hessian of f and its smallest. The dependence in κ in
Proposition 2.3.2 indicates that functions f with a large condition number κ
are harder to minimize.

More often, we want to control the number of iterations of the gradient
descent needed to find a point x with f(x)− f(x?) ≤ ε for some fixed ε > 0.
Proposition 2.3.2 implies that T = log(ε−1)/κ operations are needed. When
minimizing the empirical risk, we want to compute a predictor that performs
almost as well as the empirical risk minimizer f̂F . Considerations in the
previous chapter shows that one can expect the excess risk of f̂F to be at
least of order 1/

√
n. Therefore, taking ε of order 1/

√
n will most of the time

be enough in our setting. This means that roughly log(n)/κ iterations are
needed.

It is possible to relax some assumptions in the previous convergence result.
For instance, if f is not strongly convex, one still has convergence of the
iterates of the gradient descent, although at a much slower rate.
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Proposition 2.3.3 (Convergence of gradient descent for smooth functions).
Let f be a convex β-smooth function defined on Rd. Consider the iterates
(xt)t=0,...,T of the gradient descent with constant step-size s = 1/β and ini-
tialization x0. Assume that f has a global minimizer x?. Then, we have

f(xT )− f(x?) ≤ β‖x0 − x?‖2

2T
(2.22)

The dependence is not exponential in T anymore, but only polynomial.
In particular, without the strong convexity assumption, O(β/ε) iterations
are needed, a number that is polynomial (and not logarithmic) in ε−1. For
ε = 1/

√
n, this leads to O(β

√
n) iterations. The proof of Proposition 2.3.3

is more delicate than the previous one and we do not include it. It can be
found in [Bansal and Gupta, 2019, Theorem 3.3].

Consider a smooth convex function f that is strongly convex only on a
neighborhood of its minimizer x?. Proposition 2.3.3 implies that gradient de-
scent converges in a small number of steps to a point in this neighborhood.
Then, gradient descent will linearly converge to the minimizer. Therefore,
gradient descent will naturally adapt to the degree of convexity of the func-
tion, without the need to design any complicated procedure to choose the
size step: we refer to this phenomenon as gradient descent being adaptive.

2.4 Newton’s method

The gradient descent relies on a first order approximation of f : f(x0 + h)
locally looks like f(x0) + 〈∇f(x0), h〉, so to decrease f , we should make a
step in the direction minimizing the quantity 〈∇f(x0), h〉 (and this direction
is given by −∇f(x0)). What if we try to write a second-order approximation
of f around x0? This yields to a second-order method called Newton’s
method. We have

f(x0 + h) ≈ Pf,x0(h) = f(x0) + 〈∇f(x0), h〉+
1

2
hT∇2f(x0)h. (2.23)

Let us find the minimum of the quadratic function Pf,x0 . Its gradient is equal
to ∇f(x0)+∇2f(x0)h. Therefore, should the Hessian be invertible at x0 (for
instance if f is strongly convex), then the minimum of Pf,x0 is attained at
h = (∇2f(x0))−1∇f(x0).
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Definition 2.4.1. Let f be a real-valued function and let x0 ∈ Rd. Assume
that the Hessian of f is always invertible. Let T ∈ N be a number of steps.
A step of Newton’s method is given by

xt+1 := xt − (∇2f(xt))−1∇f(xt), (2.24)

for t ∈ {0, . . . , T − 1}.

To obtain convergence guarantees on Newton’s method, we will need Lip-
schitz continuity of the Hessian matrix ∇2f .

Proposition 2.4.2. Let f be a twice differentiable real-valued convex func-
tion defined on Rd with ‖∇2f(x)u − ∇2f(y)u‖ ≤ γ‖x − y‖‖u‖ for every
x, y, u ∈ Rd. Assume further that f is α-strongly convex and β-smooth,
with unique minimizer x?. Consider the iterates (xt)t=0,...,T of the Newton’s
method with initialization x0. Then, we have

‖xt+1 − x?‖ ≤ γ

2α
‖xt − x?‖2. (2.25)

In particular, if ‖x0 − x?‖ ≤ α/γ, then we have

f(xT )− f(x?) ≤ βα

γ
2−2T+1

. (2.26)

Proof. The first step consists in rewriting the update:

xt+1 − x? = xt − x? − (∇2f(xt))−1∇f(xt)

= xt − x? − (∇2f(xt))−1

∫ 1

0

∇2f(x? + θ(xt − x?))(xt − x?)dθ

= (∇2f(xt))−1(∇2f(xt))(xt − x?)

− (∇2f(xt))−1

∫ 1

0

∇2f(x? + θ(xt − x?))(xt − x?)dθ

= (∇2f(xt))−1Gt(xt − x?),

where Gt =
∫ 1

0
(∇2f(xt)−∇2f(x? + θ(xt − x?))dθ. The operator norm of Gt

is controlled:∥∥Gt
∥∥

op
≤
∫ 1

0

∥∥∇2f(xt)−∇2f(x? + θ(xt − x?)
∥∥

op
dθ

≤ γ

∫ 1

0

(1− θ)‖xt − x?‖dθ ≤ γ

2
‖xt − x?‖.
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Therefore, we obtain

‖xt+1 − x?‖ ≤
∥∥(∇2f(xt))−1

∥∥
op

γ

2
‖xt − x?‖2 ≤ γ

2α
‖xt − x?‖2. (2.27)

To iterate this relation, remark that it can be written as

c‖xt+1 − x?‖ ≤ (c‖xt+1 − x?‖)2, (2.28)

where c = γ
2α

. This yields

c‖xT − x?‖ ≤ (c‖x0 − x?‖)2T ≤ 2−2T , (2.29)

where we use the condition ‖x0 − x?‖ ≤ α/γ. Eventually, β-smoothness in
x? implies that

f(xT )− f(x?) ≤ 〈∇f(x?), xT − x?〉+
β

2
‖xT − x?‖2

=
β

2
‖xT − x?‖2 ≤ βα

γ
2−2T+1

.
(2.30)

Newton’s method converges much faster than gradient descent. We refer
to this behavior as a quadratic convergence (because (2.25) states that each
iterate is quadratically closer to the minimum than the previous one). Only

O( log log ε−1

βα/γ
) iterations are needed to obtain an error ε. In the empirical risk

minimization context with n observations, this translates to roughly log log n
iterations. However, each iteration requires to compute the inverse of the
Hessian matrix ∇2f(x). In dimension d, this takes O(d3) operations using
Gauss-Jordan elimination. If d is large (and it is in many applications!), then
this cost is prohibitive. Note however that methods that are much smarter
than Gauss-Jordan elimination are used in practice to compute one step of
Newton’s method. Another drawback of Newton’s method is that it will
totally break down should f not be strongly convex. On the opposite, even
without strong convexity, we still have convergence guarantees (although
slower) for gradient descent (Proposition 2.3.3).

2.5 Logistic regression

Recall the setting of Section 2.1. We consider the classification problem, and
consider classifiers of the form x 7→ sgn(g(x)) where g : X → R is some
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function. The loss that appears in this context is given by `01(g(x), y) =
1{g(x)y < 0}. Given n observations (x1,y1), . . . , (xn,yn), the empirical risk
is equal to

g 7→ Rn(g) =
1

n

n∑
i=1

`01(g(xi),yi). (2.31)

A powerful method to find a good classifier g consists in replacing the `01

loss by a convex loss function that, hopefully, will lead to similar behaviors.
There are a lot of different choices that can act as a surrogate for the `01 loss.
A popular one is the logistic loss

`log(y, y′) = log(1 + exp(−yy′)) = − log(σ(yy′)), (2.32)

where σ is the sigmoid function

σ : t 7→ 1

1 + exp(−t)
∈ [0, 1], (2.33)

see Figure 2.5. Note that σ satisfies σ(−t) = 1 − σ(t). The corresponding
empirical risk is

g 7→ R̃n(g) =
1

n

n∑
i=1

log(1 + exp(−yig(xi)))

=
1

n

n∑
i=1

zi log(1 + exp(−g(xi)))

+ (1− zi) log(1 + exp(g(xi))),

(2.34)

where zi = 1{yi = 1}. Note that this function is convex in g1.

Link with maximum likelihood estimation

Let G be a class of real-valued functions defined on X (for instance G is the
set of linear functions). We consider the following modelization. Assume that
there exists g ∈ G such that (x,y) is obtained by sampling x according to
Px, and then letting y = 1 with probability σ(g(x)), and y = −1 otherwise.

1We have defined what it means to be convex for functions defined on Rd. However,
the definition (2.5) can be used as a definition for a convex functionial defined on a space
of functions.
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Figure 2.6: The logistic loss is a convexification of the 0− 1 loss.

The likelihood of a set of observations (x1,y1), . . . , (xn,yn) at g ∈ G is
given by

n∏
i=1

σ(g(xi))
zi(1− σ(g(xi)))

1−zi , (2.35)

where once again zi = 1{yi = 1}. The log-likelihood is equal to

n∑
i=1

zi log(σ(g(xi))) + (1− zi) log(1− σ(g(xi)))

=
n∑
i=1

zi log(σ(g(xi))) + (1− zi) log(σ(−g(xi)))

= −
n∑
i=1

zi log(1 + exp(−g(xi))) + (1− zi) log(1 + exp(g(xi)))

= −R̃n(g).

(2.36)

Therefore, maximizing the log-likelihood is equivalent to minimizing the em-
pirical risk R̃n. In particular, the empirical risk minimizer ĝG is a maximum
likelihood estimator! Maximum likelihood esitmators are known to satisfy
strong theoretical properties (consistency, asymptotic normality, etc.), justi-
fying the use of the logistic loss as a surrogate for the 0− 1 loss.

Example 2.5.1. In [Çinar et al., 2020], the authors use image processing tech-
niques to extract eight relevant geometric features from two different variety



2.5. LOGISTIC REGRESSION 39

of raisins (Kecimen and Besni). Each grain is then described by a vector in
Rd for d = 8 corresponding to those different features (area, perimeter, eccen-
tricity, etc.). We consider the set of affine classifiers Gaff containing functions
g of the form x 7→ θ>x + b for some θ ∈ Rd and b ∈ R. Given n = 450
grains, we implement a logistic regression to classify the grains into the two
varieties. Ten steps of gradient descent are enough to reach the minimizer
of the empirical risk R̃n. We display in Figure 2.7 the classifier that was
obtained (in the plane given by a PCA on the dataset). The accuracy of the
classifier is tested on a test dataset, and is equal to 85%.
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(a)

(b)

Figure 2.7: (a) Empirical risk at different steps of the gradient descent in the
logistic regression model with linear classifiers. (b) Decision boundary of the
linear classifier, in the plane given by the two principal components of the
dataset.



Chapter 3

Stochastic convex
optimization

We presented in Chapter 1 the risk minimization paradigm. Let P be a
probability distribution on X × Y (where X is the set of inputs and Y is
the set of outputs). Given a loss function ` : Y × Y , we defined the P -
risk of a predictor f : X × Y as the quantity RP (f) = EP [`(f(x),y)]. The
Bayes predictor is defined as the predictor f ?P minimizing the P -risk, with
R?
P = RP (f ?P ). To approach the Bayes predictor, we introduce a class of

predictors F = {fθ : X → Y , θ ∈ Θ} indexed by some convex subset
Θ ⊂ Rd and consider the minimizer θ? of the function θ ∈ Θ 7→ RP (fθ).
Note that in practice, we do not have access to the function RP (fθ) (as P is
unknown), so that computing θ? is not an option.

In Chapter 1, we proposed to approximate θ? by computing the minimum
of the empirical risk Rn on the class of predictors F . We here propose a
slightly different perspective to achieve this same goal. What if we tried to
apply the gradient descent algorithm presented in Chapter 2 to the function
F : θ 7→ RP (fθ)? To do so, we only need to have access to the gradient of
F , which is given at θ ∈ Θ by

∇F (θ) = EP [∇θ`(fθ(x),y)]. (3.1)

Of course, as we do not have access to P , we cannot compute this gradient.
However, an unbiased estimator of this gradient is given by ∇θ`(fθ(xi),yi),
where (xi,yi) is an observation with distribution P . Running gradient de-
scent with those approximations of the gradient is referred to as stochas-

41
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tic gradient descent. We explore in this chapter the performance of this
method, and compare it with gradient descent applied to the empirical risk
Rn.

3.1 Stochastic gradient descent

We consider the more general setting where the goal is to minimize a function
F : Θ ⊂ Rd → R. Stochastic gradient descent will iteratively compute a
sequence of (random) iterates θt, based on (random) approximations of the
gradients ∇F (θt). More precisely, we assume that for every t ≥ 0, we have
access to a random vector vt that satisfies E[vt|θt] = ∇F (θt).

Algorithm 1: Stochastic gradient descent

1 Initialization: list of step sizes (st)t=1,...,T−1, θ1 ∈ Θ;
2 for t = 1, . . . , T − 1 do
3 draw vt such that E[vt|θt] = ∇F (θt);
4 let θt+1 = θt − stvt;

5 end

6 Output: θ = 1
T

=
∑T

t=1 θ
t;

This general framework might appear quite abstract, so let us give directly
the application we have in mind in this chapter. Let F (θ) = EP [`(fθ(x),y)],
so that ∇F (θ) = EP [∇θ`(fθ(x),y)]. Assume that we have access to a sample
of T i.i.d. samples (x1,y1), . . . , (xT−1,yT−1) from the distribution P . In this
case, we define vt = ∇θ`(fθt(xt),yt). As the vector θt only depends on the
observation (xj,yj) for j < t, vt is independent from θt, ensuring that

E[vt|θt] = EP [∇θt`(fθ(x),y)] = ∇F (θt). (3.2)

Example 3.1.1. Another set of examples where stochastic gradient descent
can be utilized is when we are looking for the minimum of a function F of
the form θ 7→ 1

n

∑n
i=1 Fi(θ), where the functions Fi : Θ → R are arbitrary

functions. There is nothing random in the definition of the function F .
We may however define a uniform random variable i on the set of indexes
{1, . . . , n}, and remark that one can express F as

F (θ) = E[Fi(θ)]. (3.3)
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In this situation, one can obtain unbiased estimates of the gradients, by
letting i1, . . . , iT−1 be T i.i.d. uniform random indexes and then by defining
vt = ∇Fit(θ

t).

We are now ready to state our first theorem: stochastic gradient descent
converges as long as the function F is convex, Lipschitz continuous, and that
the estimates vt of the gradients are bounded.

Theorem 3.1.2. Let B(0;R) be the open ball centered at 0 in Rd. Let F :
Rd → R be a convex differentiable function, with minimizer θ? ∈ B(0;R).
Let T ≥ 1 be an integer and assume that for every t = 1, . . . , T − 1, it holds
that E[‖vt‖2] ≤ ρ2 for some constant ρ > 0. Consider stochastic gradient

descent with constant step size s =
√

4R2

ρ2T
and initialization θ0 ∈ B(0;R).

Then, the output θ of stochastic gradient descent after T steps satisfies

E[F (θ)]− F (θ?) ≤ 2
Rρ√
T
. (3.4)

First proof of Theorem 3.1.2: without randomness. We first give a proof of
Theorem 3.1.2 in the case where we always have vt = ∇F (θt). Note that in
this case, the algorithm boils down to classical gradient descent, where we
use the average of the iterates as our final approximation. To insist on the
non-randomness of the method, we write vt instead of vt. We can first apply
Jensen’s inequality: it holds that

F (θ) ≤ 1

T

T∑
t=1

F (θt). (3.5)

Also, by convexity of F (see Proposition 2.2.3), we have

F (θt)− F (θ?) ≤ 〈vt, θt − θ?〉 (3.6)

(remember that vt = ∇F (θt) by assumption in this simplified setting).
Putting those two equation together yields that

F (θ)− F (θ?) ≤ 1

T

T∑
t=1

〈vt, θt − θ?〉. (3.7)

To bound the sum in (3.7), we are going to make a telescopic sum appear.
To do so, we use the general identity

〈a, b〉 =
1

2
(‖a+ b‖2 − ‖a‖2 − ‖b‖2) (3.8)
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with a = θ? − θt, b = svt. This yields

〈vt, θt − θ?〉 = −1

s
〈svt, θ? − θt〉

= − 1

2s
(‖θ? − θt + svt‖2 − ‖θt − θ?‖2 − s2‖vt‖2)

= − 1

2s
(‖θt+1 − θ?‖2 − ‖θt − θ?‖2 − s2‖vt‖2)

=
1

2s
(‖θt − θ?‖2 − ‖θt+1 − θ?‖2) +

s

2
‖vt‖2. (3.9)

By summing over t, we obtain from (3.7) that

F (θ)− F (θ?) ≤ 1

2Ts
(‖θ0 − θ?‖2 − ‖θT − θ?‖2) +

s

2T

T∑
t=1

‖vt‖2. (3.10)

To conclude, we use that both θ0 and θ? belong to R, and that all the
gradients vt have a norm smaller than ρ:

F (θ)− F (θ?) ≤ (2R)2

2Ts
+
sρ2

2
. (3.11)

One obtains the conclusion by plugging in the value s =
√

4R2

ρ2T
.

Second proof of Theorem 3.1.2: general case. In the general case, we adopt
the same proof technique, but have to be careful when taking expectations.
First, note that as before, by Jensen inequality,

F (θ)− F (θ?) ≤ 1

T

T∑
t=1

〈G(θt), θt − θ?〉

=
1

T

T∑
t=1

〈E[vt|θt], θt − θ?〉

=
1

T

T∑
t=1

E[〈vt, θt − θ?〉|θt].

(3.12)
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Therefore, by using the law of total expectation,

E[F (θ)]− F (θ?) ≤ E

[
1

T

T∑
t=1

E[〈vt, θt − θ?〉|θt]

]

=
1

T

T∑
t=1

E[〈vt, θt − θ?〉]

= E

[
1

T

T∑
t=1

〈vt, θt − θ?〉

]
.

(3.13)

As before, it holds that

1

T

T∑
t=1

〈vt, θt − θ?〉 =
1

2Ts
(‖θ0 − θ?‖2 − ‖θT − θ?‖2) +

s

2T

T∑
t=1

‖vt‖2

≤ (2R)2

2Ts
+

s

2T

T∑
t=1

‖vt‖2.

(3.14)

By putting (3.13) and (3.14) together, we obtain that

E[F (θ)]− F (θ?) ≤ (2R)2

2Ts
+

s

2T

T∑
t=1

E[‖vt‖2]

≤ (2R)2

2Ts
+

s

2T

T∑
t=1

ρ2

≤ (2R)2

2Ts
+
sρ2

2
.

The conclusion is obtained as before by choosing s =
√

4R2

ρ2T
.

Remark 3.1.3. 1. The randomness in (3.4) comes from the randomness in
the estimates vt of the gradients. In particular, we want to insist on
the fact that the function F is not random here.

2. As a particular case of this theorem, we may consider the case where
vt = ∇F (θt) (exact gradients). This exactly corresponds to classical
gradient descent with the final output being equal to the average of the
iterates θt.
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3. In practice, it is common to discard the first iterates when computing
the average θ. This allows one to ”forget” about the initialization θ1

(that has no reason to be relevant).

Example 3.1.4 (Toy example). Consider the function F : R2 → R defined by
F (θ) = a1

2
θ2

1 + a2
2
θ2

2. If we have access to the gradients of F , then iterates of
the gradient descent will linearly converge to 0 according to the results from
Chapter 2. If, on the opposites, we do not have access to ∇F (θ), but to a
corrupted version v = ∇F (θ)+u where u is a bounded random variable, then
we can implement stochastic gradient descent. The iterates of the stochastic
gradient descent are displayed in Figure 3.1.

The rate of convergence in this theorem is of order 1/
√
T . In the previous

chapter (Proposition 2.3.3), we showed that if F is β-smooth (that is the
gradient of F is β-Lipschitz), then we can have a rate of convergence of
order 1/T . It is natural to wonder if this faster rate also holds for stochastic
gradient descent. It turns out that assuming smoothness does not improve
the 1/

√
T rate of convergence here. However, assuming that the function is

α-strongly convex is enough to obtain this 1/T -rate of convergence. To do
so, we use a variant of the previous stochastic gradient algorithm where we
use an additional projection step to ensure that the different iterates θt do
not blow up. For R > 0, we let

projR(θ) =

{
θ if ‖θ‖ ≤ R

R θ
‖θ‖ otherwise,

(3.15)

see also Figure 3.2.

Algorithm 2: Stochastic gradient descent with projection step

1 Initialization: list of step sizes (st)t=1,...,T−1, θ1 ∈ Θ, radius R > 0;
2 for t = 1, . . . , T − 1 do
3 draw vt such that E[vt|θt] = G(θt);
4 let θt+1 = projR(θt − stvt);

5 end

6 Output: θ = 1
T

=
∑T

t=1 θ
t;

Theorem 3.1.5. Let F : Rd → R be a α-strongly convex differentiable func-
tion, with minimizer θ? ∈ B(0;R). Let T ≥ 1 be an integer and assume
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Figure 3.1: Top: iterates of the gradient descent. Bottom: iterates of the
stochastic gradient descent (red), and average of the first iterates (green).
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Figure 3.2: The projR function.

that for every t = 1, . . . , T − 1, it holds that E[‖vt‖2] ≤ ρ2 for some con-
stant ρ > 0. Consider stochastic gradient descent with projection step, with
step size st = 1/(αt) and initialization θ1. Then, the output θ of stochastic
gradient descent after T steps satisfies

E[F (θ)]− F (θ?) ≤ ρ2

2αT
(1 + log(T )). (3.16)

Proof. For sake of simplicity, we prove the result in the case R =∞ (that is
without the projection step). Our starting point is once again the identity
(3.9), that states that

〈vt, θt − θ?〉 =
1

2st
(‖θt − θ?‖2 − ‖θt+1 − θ?‖2) +

st
2
‖vt‖2

=
αt

2
(‖θt − θ?‖2 − ‖θt+1 − θ?‖2) +

1

2αt
‖vt‖2.

(3.17)

We then use strong convexity (see Proposition 2.9), which implies that for
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every t ≥ 1,

F (θt)−F (θ?) ≤ 〈∇F (θt), θt − θ?〉 − α

2
‖θt − θ?‖2

= 〈E[vt|θt], θt − θ?〉 − α

2
‖θt − θ?‖2

= E
[
〈vt, θt − θ?〉 − α

2
‖θt − θ?‖2

∣∣∣θt]
= E

[α(t− 1)

2
‖θt − θ?‖2 − αt

2
‖θt+1 − θ?‖2 +

1

2αt
‖vt‖2

∣∣∣θt].
(3.18)

The next steps are now similar to the previous proof. We first apply Jensen’s
inequality to obtain that F (θ)− F (θ?) ≤ 1

T

∑T
t=1(F (θt)− F (θ?)). Summing

the inequality (3.18) for t = 1, . . . , T − 1, we obtain that

E[F (θ)− F (θ?)] ≤ 1

T

T∑
t=1

E[F (θt)− F (θ?)]

≤ 1

T

T∑
t=1

E[F (θt)− F (θ?)]

≤ 1

T

T∑
t=1

E
[
E
[α(t− 1)

2
‖θt − θ?‖2 − αt

2
‖θt+1 − θ?‖2 +

1

2αt
‖vt‖2

∣∣∣θt]]
≤ 1

T
E
[ T∑
t=1

α(t− 1)

2
‖θt − θ?‖2 − αt

2
‖θt+1 − θ?‖2 +

1

2αt
‖vt‖2

]
≤ E

[
− αT

2T
‖θT − θ?‖2 +

1

T

T∑
t=1

1

2αt
‖vt‖2

]
≤ 1

T

T∑
t=1

ρ2

2αt
≤ ρ2

2αT
(1 + log(T )),

concluding the proof.

Note that one can actually choose R = +∞ in the previous theorem, so
that the same result holds without the projection step. However, it is most of
the time delicate to ensure that the expected norm of the gradients E[‖vt‖2]
stay bounded without this projection step. For example, for a quadratic
function of the form F (θ) = α

2
‖θ‖2, the norm of the gradient will blow up if

‖θ‖ diverges. An alternative method to ensure that the iterates do not blow
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up consists in adding a regularization term to the objective function, that
is we minimize F (θ) + λ‖θ‖2 for some λ > 0 instead. See Theorem 5.5 in
[Bach, 2022] for details.

3.2 Application to risk minimization

We now review how those theorems translate in the setting of risk minimiza-
tion. Let F (θ) = RP (fθ) = EP [`(fθ(x),y)] be the P -risk of some predictor
fθ indexed by θ ∈ Rk, with minimizer θ?. Assume that we have access to
n i.i.d. samples (x1,y1), . . . , (xn,yn) from distribution P . We compare two
methods:

• (SGD) Let θ̂SGD be the output Stochastic gradient descent (with pro-
jection) with n steps using the gradient estimates ∇θ`(fθ(xi),yi).

• (GD-ER) Let θ̂T be the output of gradient descent applied for T steps
on the empirical risk

θ 7→ Rn(fθ) =
1

n

n∑
i=1

`(fθ(xi),yi). (3.19)

Note that for any of those predictors θ̂, it holds that the expected excess of
risk can be decomposed into

E[RP (fθ̂)−R
?
P ] = E[RP (fθ̂)−RP (fθ?)]︸ ︷︷ ︸

optimization error

+RP (fθ?)−R?
P︸ ︷︷ ︸

approximation error

. (3.20)

As explained in Chapter 1, the approximation error will depend only the
”size” of the set of predictors F = {fθ, θ ∈ Rk}. On the contrary, the
optimization error will depend on our method to find the minimum of F .
We consider two questions.

• (Q1) What is the minimal number n of samples required to get an
optimization error smaller than ε using (SGD) or (GD-ER)?

• (Q2) What is the associated time complexity of the algorithm?
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For sake of conciseness, we will only answer (Q1) and (Q2) in the ”favorable”
case where, for every x ∈ X and y ∈ Y , the function θ ∈ Rk 7→ `(fθ(x), y)
is α-strongly convex and β-smooth. We further assume that the minimizer
θ? belong to B(0;R) with R of the form c/

√
β. One can try as an exercise

to play to the same game by removing for instance the α-strongly convex
assumption. We let κ = β/α ≥ 1 be the condition number. Also, we use the
notation Õ(εa) to denote a quantity of the form εa(log(ε)−1)b. This allows
us to hide logarithmic factors that are almost constant in practice.

Let us first consider (SGD). In this setting, every gradient vt is of the
form ∇θ`θt(fθ(xi),yi). By definition of β-smoothness (Definition 2.2.7), the
norm of this gradient is smaller than

β‖θt − θ?‖ ≤ 2βR = ρ.

According to Theorem 3.1.5 with n = T , we need n = Õ(β2R2/(αε)) samples
to reach a precision ε. Evaluating the gradient ∇`(fθ(xi),yi) requires O(k)
operations, so that the time complexity of SGD is Õ(kβ2R2/(αε)). Recalling
that we assume that R2 ≤ c2/β, we obtain a time complexity of order

Õ(kκ/ε).

The analysis of (GD-ER) is slightly more complicated. Let θ̂∞ be the
minimizer of θ 7→ Rn(θ) (that is the actual empirical risk minimizer). One
can further bound the optimization error:

RP (fθ̂T )−RP (fθ?) ≤ RP (fθ̂T )−Rn(fθ̂T )

+Rn(fθ̂T )−Rn(fθ̂∞)

+Rn(fθ̂∞)−Rn(fθ?)

+Rn(fθ?)−RP (fθ?)

≤ 2 · sup
θ
|Rn(fθ)−RP (fθ)|+Rn(fθ̂T )−Rn(fθ̂∞)

where at the last line we use that Rn(fθ̂∞) ≤ Rn(fθ?) by definition of the
empirical risk minimizer. The first term in this last inequality can be shown
to be at least of order 1/

√
n (this follows from Rn(fθ) being the average

of n i.i.d. random variables). In particular, to reach an optimization error
E[RP (fθ̂T ) − RP (fθ?)] of order ε, we need at least n = O(ε−2) samples.
Propostion 2.3.2 asserts that after T steps of gradient descent we have a
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control of the form

Rn(θT )−Rn(θ∞) ≤ exp(−T/κ)(Rn(θ0)−Rn(θ∞))

≤ exp(−T/κ)
β

2
‖θ0 − θ∞‖2

≤ exp(−T/κ)2R2β ≤ exp(−T/κ)2c2,

(3.21)

where we also use the definition of β-smoothness and the fact that both ‖θ0‖
and ‖θ̂∞‖ are smaller than R. Therefore, to make this quantity smaller than
ε, a number T = Õ(κ) of steps of gradient descent are required. As computing
a single gradient ∇θRn(fθ) requires to compute n gradients ∇θ`(fθ(xi),yi),
the final complexity of gradient descent is in this situation

Õ(knT ) = Õ(knκ) = Õ(k/ε2κ).

We summarize the different results in the following table. Stochastic
gradient descent requires less samples and a smaller time complex-
ity to attain a given accuracy.

Algo. Num. of samples Complexity

SGD n = Õ(κ/ε) Õ(kκ/ε)

GD n = O(1/ε2) Õ(kκ/ε2)

Table 3.1: Summary of the convergence rates in the α-strongly convex and
β-smooth case.



Chapter 4

Kernel methods

4.1 Linear regression with feature maps

Consider the dataset x1, . . . ,xn presented in Figure 4. Points inside the ball
B = {x ∈ R2, ‖x‖ ≤ 1} are assigned to −1, whereas points outside B are as-
signed to +1. No linear classifiers will then be able to obtain a good accuracy.
A first possibility is to look for more complicated classifiers (composed of in-
tersections of hyperplanes for instance). Another possibility is to ”lift” the
dataset to a higher dimensional space by considering the map Φ : R2 → R3

defined by Φ(x) = (x, ‖x‖2). The transformed dataset (Φ(x1), . . . ,Φ(xn)) is
displayed in Figure 4. Remark that this transformed dataset, although in
higher dimension than the original dataset, is considerably simpler to clas-
sify: there now exists a linear classifier in R3 that will make exactly zero
classification errors on the training set. This toy example showcases an im-
portant concept: if a dataset has some complex structure, it may be a good
idea to look at a transformation of the dataset into a larger space. In the
larger space, the transformed dataset has hopefully a simpler structure, and
a basic method (for instance a linear regression) will then have a very good
performance. We call such a transformation Φ a feature map.

Let us consider another, less artificial example of this phenomenon. In
polynomial regression, the goal is to fit a polynomial function of degree d
to observations (x1,y1), . . . , (xn,yn), with xi ∈ R and yi ∈ R. Let Fd
be the set of polynomial functions of the form fa : x 7→

∑d
j=0 ajx

j where

53
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Figure 4.1: Top: We set y = −1 for points x inside B, and y = +1 otherwise.
No linear classifier can attain good accuracy on this dataset. Bottom: In this
new representation, there exists a linear classifier with zero risk (given by the
equation z = 1).
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a = (a0, . . . , ad) ∈ Rd+1. We are looking for the minimizer of the risk

fa ∈ Fd 7→ Rn(fa) :=
1

n

n∑
i=1

|yi − fa(xi)|2. (4.1)

Let Φd : R → Rd+1 be defined by Φd(x) = (1, x, x2, . . . , xd). Then, fa(xi) =
〈a,Φd(xi)〉. It holds that

Rn(fa) =
1

n

n∑
i=1

|yi − 〈a,Φd(xi)〉|2 =
1

n
‖Y − X̃a‖2,

where Y = (y1, . . . ,yn)> ∈ Rn and X̃ is the matrix of size n × (d + 1)
with ith row given by Φd(xi). Therefore, minimizing the empirical risk Rn

over Fd is equivalent to performing a linear regression over the transformed
dataset ((Φd(x1),y1), . . . , (Φd(xn),yn)). This is an instance of the same phe-
nomenon: when a linear technique (linear regression) does not perform well,
map the dataset in a larger space (here using Φd) and apply a linear technique
in higher dimension.

Consider now a general feature map Φ : X → RD, and the associated
linear regression problem

1

n

n∑
i=1

|yi − 〈a,Φ(xi)〉|2 =
1

n
‖Y − X̃a‖2, (4.2)

with Y defined as before and where X̃ is the matrix of size n × D with
rows given by Φ(xi). Assuming that the matrix X̃>X̃ is invertible, the linear
regression predictor is given by

â = (X̃>X̃)−1X̃>Y. (4.3)

Computing this solution requires to compute the matrix (X̃>X̃)−1. In par-
ticular, we need to inverse a matrix of size D×D.1 This is computationally
intractable if D is large (naively, it requires O(D3) operations). Therefore,
it might look like we have found a limitation of the ”lifting” approach: if
we lift our observations in a space of dimension too large, then minimizing
becomes a problem too hard to solve. However, there is a trick that allows

1If the matrix X̃>X̃ is not invertible, it can be replaced by its so-called pseudo-inverse,
so this discussion applies in both regimes where D ≥ n and n ≥ D.
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us to bypass this limitation. Indeed, remark that we can always assume that
a minimizer â of (4.2) is of the form

n∑
l=1

b̂lΦ(xl) (4.4)

for some coefficients b̂l ∈ R. Otherwise, we may project â on the vector space
spanned by the vectors Φ(xi). The projected vector ã is such that X̃â = X̃ã
and is of the form (4.4). Therefore, there are always minimizers of the form
(4.4).

This discussion implies that it suffices to look for vectors a of the form
a =

∑n
l=1 blΦ(xl) when looking for the minimum of (4.2). This is equivalent

to minimizing the functional

b ∈ Rn 7→ 1

n

n∑
i=1

|yi −
n∑
l=1

bl〈Φ(xi),Φ(xl)〉|2 =
1

n
‖Y −Gb‖2, (4.5)

where G is the Gram matrix of size n × n, defined by Gij = 〈Φ(xi),Φ(xj)〉.
Computing G requires a number of computations that is only linear in D,
and once it is computed, the complexity of the problem will only depend on
the number of observations n. Should G be invertible, the optimal vector b̂
is given by

b̂ = G−1Y. (4.6)

Let us summarize what we have done so far.

• Instead of looking for a complex predictor on the dataset (x1, . . . ,xn),
we lift the observations to a higher dimensional space using a feature
map Φ : X → RD.

• In this higher dimensional space, we then look for a simple prediction
(e.g. a linear regression, a ridge regression, etc.).

• If the feature space RD is very large, then ”naive” computations be-
come intractable. However, it turns out that, once the Gram matrix
G of dot products 〈Φ(xi),Φ(xj)〉 is computed, the complexity of the
problem only depends on the number of observations n. Such a remark
is referred to as the kernel trick.
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This last remark is particularly important. It shows that we never need
to actually compute the vectors Φ(xi), but only the dot products Gij =
〈Φ(xi),Φ(xj)〉. For some feature maps Φ, the dimension D is very large (or
even infinite!) whereas a very simple expression exists for the dot product,
making such an observation particularly appealing.

4.2 Reproducing Kernel Hilbert Spaces

The Gram matrix G that we introduced in the previous section is a matrix
whose entries Gij = 〈Φ(xi),Φ(xj)〉 measure the proximity between the obser-
vations xi and xj. If Gij is large, then Φ(xi) and Φ(xj) are aligned, meaning
that xi and xj are similar in some sense. On the contrary, if Gij = 0, then
Φ(xi) is orthogonal to Φ(xj) and xi and xj are very different (at least if we be-
lieve that Φ captures relevant information on the observations). This suggests
the following bold idea: what if we replace the dot product 〈Φ(xi),Φ(xj)〉
by a ”measure of similarity” k(xi,xj) between xi and xj? For instance, a
possible notion of similarity is given by the so-called Gaussian (or RBF)
kernel

kσ(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
(4.7)

for x, x′ ∈ Rd. Indeed, if x and x′ are close, then kσ(x, x′) = 1 (high sim-
ilarity), whereas if x and x′ are far away, then kσ(x, x′) is very small (low
similarity).

It turns out that under mild conditions on the function k, we can show
that there exists some feature map Φ with k(x, x′) = 〈Φ(x),Φ(x′)〉. In par-
ticular, the discussion of the previous section holds with this feature map Φ.
To implement a linear regression, we only need to compute the Gram matrix
G, whose entries are given by

Gij = 〈Φ(xi),Φ(xj)〉 = k(xi,xj).

Therefore, the feature map Φ never needs to be actually computed! Only the
values k(xi,xj) have to be computed.

Proving the existence of this feature map Φ requires the introduction of
some mathematical machinery. In particular, Φ will in general have outputs
living in a space of infinite dimension, that we call a Hilbert space. A Hilbert
spaceH is a vector space where we define a notion of dot product that behaves
like the classical dot product on RD. This means the following:
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• Symmetry: for all x, y ∈ H, 〈x, y〉H = 〈y, x〉H.

• Linearity: for every vectors x, y, z ∈ H and λ, µ ∈ R, we have 〈x, λy +
µz〉H = λ〈x, y〉H + µ〈x, z〉H.

• Positive definiteness: for all x ∈ H, 〈x, x〉H ≥ 0, with equality if and
only if x = 0. We write ‖x‖H for

√
〈x, x〉H. This defines a norm on

H.

• Completeness: for every continuous linear map L : H → R, there exists
a vector h ∈ H such that L(x) = 〈h, x〉H for every x ∈ H.

Thise last property might appear mysterious. One can check that it is always
satisfied if H is a Hilbert space of finite dimension (that is H = Rd). In
infinite dimension, completeness ensures that some common mathematical
operations (e.g. taking infinite sums or projecting vectors on subspaces) are
well-defined.

Example 4.2.1 (For those interested in math theory). Let us show that in
a Hilbert space, infinite sums are well-defined. Let (hn)n≥0 be vectors in a
Hilbert spaceH, and assume that the infinite sum of real numbers

∑
n≥0 ‖hn‖H

is finite. Let L : H → R be defined by L(x) =
∑

n≥0〈hn, x〉. One can check
by Cauchy-Schwartz inequality that we have

|L(x)| ≤
∑
n≥0

‖hn‖H‖x‖H <∞.

Also, by properties of the sum, L is linear. Therefore, L is a continuous
linear map. By completeness, there exists a vector g ∈ H such that L(x) =
〈g, x〉 for every x. By definition, we denote this vector by

∑
n≥0 hn, and

this is our definition of the infinite sum! One can then check that with this
definition, infinite sums in the Hilbert space H satisfy the usual properties
(e.g. linearity).

An example of vector space H that is not complete is given by the
space of continuous bounded functions on [0, 1], endowed with the dot prod-

uct 〈f, g〉 =
∫ 1

0
f(t)g(t)dt. One can check that the linear map defined by

L(f) =
∫ 1/2

0
f(t)dt is continuous. However, there does not exist any contin-

uous function h with

L(f) =

∫ 1/2

0

f(t)h(t)dt



4.2. REPRODUCING KERNEL HILBERT SPACES 59

for every continuous bounded function f . Such a function h should be 1 on
[0, 1/2) and 0 on [1/2, 1], and therefore would not be a continuous bounded
function. However, the space of L2 functions on [0, 1] is complete.

Let us fix some set X and some function k : X × X → R. Assume that
k(x, x′) = 〈Φ(x),Φ(x′)〉H for some Hilbert space H and some feature map
Φ : X → H. Consider some points x1, . . . , xn ∈ X and numbers λ1, . . . , λn ∈
R. Then,

0 ≤ ‖
n∑
i=1

λiΦ(xi)‖2
H

=
∑

1≤i,j≤n

λiλj〈Φ(xi),Φ(xj)〉H

=
∑

1≤i,j≤n

λiλjk(xi, xj).

Therefore, to be represented by a feature map, the function k should at least
satisfy that ∑

1≤i,j≤n

λiλjk(xi, xj) ≥ 0. (4.8)

It turns out that this condition is also sufficient.

Definition 4.2.2 (Kernel). Let X be a set and k : X ×X → R be a function.
We say that k is a (positive semi-definite) kernel if k is symmetric and if for
every n ∈ N, every x1, . . . , xn ∈ X and every λ1, . . . , λn ∈ R, condition (4.8)
is satisfied.

Alternatively, if G is the n × n matrix with entries k(xi, xj), then (4.8)
asserts that the matrix G is positive semi-definite, that is G < 0. We are
now in position to state our main theorem.

Theorem 4.2.3. Let k be a kernel on a set X . Then, there exists a Hilbert
space H and a feature map Φ : X → H such that for every x, x′ ∈ X ,

k(x, x′) = 〈Φ(x),Φ(x′)〉H. (4.9)

Proof. Let RX be the set of functions from X to R (which is a vector space).
Define a function Φ : X → RX by Φ(x) = k(x, ·). Consider the set H0
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obtained as the set of finite sums of the form
∑n

i=1 λiΦ(xi) for elements
xi ∈ X and λi ∈ R. The set H0 is a vector space, and we can define a
dot product on it. Let f =

∑n
i=1 λiΦ(xi) and g =

∑n′

j=1 λ
′
jΦ(x′j). The dot

product is defined as

〈f, g〉H0
:=

n∑
i=1

n′∑
j=1

λiλ
′
jk(xi, x

′
j). (4.10)

One can check that this expression indeed defines a dot product and also
does not depend on the choice of expansions of f and g that we have chosen.
Furthermore, we have indeed

〈Φ(x),Φ(x′)〉H0 = k(x, x′) (4.11)

for any x, x′ ∈ H. However, the vector space H0 is not necessarily complete.
By using a process called completion, we can actually expand it to a larger
space H that is complete, and that will still satisfy (4.9).

Let us give some techniques to construct kernels.

Proposition 4.2.4. Let k1 and k2 be kernels on X .

1. The sum k1 + k2 is a kernel.

2. The product k1 · k2 is a kernel.

3. If X ⊂ Rd and k(x, x′) is of the form k(x−x′), then k is a kernel if its
Fourier transform

F [k](ξ) =

∫
exp(−2πi〈ξ, x〉)k(x)dx (4.12)

is nonnegative for every ξ ∈ Rd.

Proof. Let x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R.

1. We have∑
1≤i,j≤n

λiλj(k1(xi, xj) + k2(xi, xj))

=
∑

1≤i,j≤n

λiλjk1(xi, xj) +
∑

1≤i,j≤n

λiλjk2(xi, xj) ≥ 0.
(4.13)

Therefore, k1 + k2 is a kernel.
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2. Note that the covariance matrix G of a random variable y ∈ Rn is
always positive semi-definite (that is we have Gij = E[y(i)y(j)] where
y = (y(1), . . . ,y(n))). Reciprocally, if G is a positive semi-definite ma-
trix, then there exists a random variable y ∈ Rn with covariance matrix
G (take for instance a Gaussian random variable). Consider a random
vector y1 with covariance matrix G1 = (k1(xi, xj))ij and a random vec-
tor y2 with covariance matrix G2 = (k2(xi, xj))ij, independent from y1.

Then, one can check that the vector y = (y
(1)
1 y

(1)
2 , . . . ,y

(n)
1 y

(n)
2 ) has co-

variance matrix G with entries (k1(xi, xj) · k2(xi, xj))ij. Therefore, G
is positive semi-definite and k1 · k2 is a kernel.

3. We use the inverse Fourier transform formula

k(x) =

∫
exp(2πi〈ξ, x〉)F [k](ξ)dξ.

Therefore,

∑
1≤i,j≤n

λiλjk(xi − xj) =
∑

1≤i,j≤n

λiλj

∫
exp(2πi〈ξ, xi − xj〉)F [k](ξ)dξ

=

∫ ∑
1≤i,j≤n

λiλj exp(2πi〈ξ, xi − xj〉)F [k](ξ)dξ

=

∫
‖

n∑
i=1

λi exp(2πi〈ξ, xi〉)‖2F [k](ξ)dξ ≥ 0.

(4.14)

Therefore, k is a kernel.

Let us give some examples.

Example 4.2.5. 1. If Φ is a map from the set X to a Hilbert space H, then
k(x, x′) = 〈Φ(x),Φ(x′)〉H defines a kernel.

2. Polynomial kernels: the function k(x, x′) = 〈x, x′〉α for α ∈ N is a
kernel. This follows by induction from Proposition 4.2.4.2.
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3. The radial basis function (RBF) kernel, or gaussian kernel: the func-

tion kσ(x, x′) = exp
(
−‖x−x

′‖2
2σ2

)
defines a kernel. Indeed, the Fourier

transform of x ∈ Rd 7→ exp
(
−‖x‖

2

2σ2

)
is given by

ξ 7→
√

2πσ2 exp(−2πσ2‖ξ‖2), (4.15)

which is nonnegative.

4.3 Kernel Ridge Regression

The general kernel approach can be applied to different algorithms, some that
we have already encountered (e.g. PCA or logistic regression) and some that
we have not mentionned (kernel SVM, kernel k-means, etc.). We will here
present two algorithms that can be ”kernelized”: kernel ridge regression and
kernel PCA. Recall the setting of ridge regression. Let (x1,y1), . . . , (xn,yn)
be a training sample, with xi ∈ Rd and yn ∈ R. Ridge regression consists in
minimizing the quantity

β ∈ Rd 7→ 1

n
‖Xβ −Y‖2 + λ‖β‖2, (4.16)

where X is the n×d matrix with rows given by the xis, Y ∈ Rn is the vector
with entries yi, ‖β‖ is the 2-norm of the vector β and λ > 0 is a penalization
parameter. This function has a unique minimizer which is given by

β̂ =
(
X>X + nλIdd

)−1
X>Y. (4.17)

Let us kernelize this algorithm. We now assume that the inputs x1, . . . ,xn

are elements of an arbitrary set X , and that we are given a kernel k :
X × X → R. Let Φ : X → H be an associated feature map, such that
〈Φ(x),Φ(x′)〉H = k(x, x′) for every x, x′ ∈ H. We consider predictions of the
form x 7→ 〈Φ(x), β〉H and are looking for a minimizer of the functional

β ∈ H 7→ 1

n
‖X̃β −Y‖2 + λ‖β‖2

H, (4.18)

where X̃ is a linear operator from H to Rn, defined by

X̃β = (〈Φ(x1), β〉H, . . . , 〈Φ(xn), β〉H).

Note that in (4.18) there are two different norms appearing: the euclidean
norm, and the Hilbert norm in the penalization term.
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Theorem 4.3.1 (Representer theorem). The minimum of (4.18) is attained
at a vector β of the form β =

∑n
i=1 aiΦ(xi) for some real numbers a1, . . . , an.

Proof. Let E be the subspace of H that is spanned by the vectors Φ(xi) and
let E⊥ be the orthogonal subspace of E. We can decompose every β ∈ H into
β1 + β2, where β1 ∈ E and β2 ∈ E⊥. Note that 〈Φ(xi), β2〉H = 0 for every xi

by definition of orthogonality. This implies that 〈Φ(xi), β〉H = 〈Φ(xi), β1〉H.
Also, by orthogonality, it holds that ‖β‖2

H = ‖β1‖2
H + ‖β2‖2

H. This yields

1

n
‖X̃β −Y‖2 + λ‖β‖2

H

=
1

n
‖X̃β1 −Y‖2 + λ‖β1‖2

H + λ‖β2‖2
H

≤ 1

n
‖X̃β1 −Y‖2 + λ‖β1‖2

H.

Therefore, the minimum of (4.18) is attained at a point β with β2 = 0, that
is at a point β ∈ E.

Thus, to find the minimum of (4.18), it suffices to consider vectors β of the
form

∑n
i=1 aiΦ(xi). It is equivalent to minimize over all a = (a1, . . . , an) ∈ Rn

the quantity

1

n
‖

n∑
i=1

aiX̃Φ(xi)−Y‖2 + λ‖
n∑
i=1

aiΦ(xi)‖2
H

=
1

n

∥∥∥∥∥∥∥
n∑
i=1

ai

〈Φ(x1),Φ(xi)〉
...

〈Φ(xn),Φ(xi)〉

−Y

∥∥∥∥∥∥∥
2

+ λ
∑

1≤i,j≤n

aiaj〈Φ(xi),Φ(xj)〉

=
1

n

∥∥∥∥∥∥∥
n∑
i=1

ai

k(x1,xi)
...

k(xn,xi)

−Y

∥∥∥∥∥∥∥
2

+ λ
∑

1≤i,j≤n

aiajk(xi,xj)

=
1

n
‖Ga−Y‖2 + λa>Ga,

(4.19)

where G is the Gram matrix with entries Gij = k(xi,xj). This last expression
is convex in the parameter a ∈ Rn and is minimized at

â = (G + nλIdn)−1 Y. (4.20)
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Note that computing â requires the inversion of a n× n matrix, which is an
expensive operation if done naively (it requires O(n3) operations). The Gram
matrix of size n × n also has to be stored. Although some numerical tricks
exist to speed up the computations, kernel methods still are mostly
useful when the number n of observations is relatively small (say
n . 104). You should always try to implement a simpler linear method
before trying a more complex kernel approach.

Example 4.3.2. We apply kernel ridge regression to a weather forecasting
problem (data from Weather Underground API ). For four years, we are given
the weather day yi at the ith day of the year xi. The goal is to predict the
weather on a future day. We implement on Python a kernel ridge regression
on the data points (xi,yi) using the sklearn function KernelRidge with λ =
1, while using the RBF kernel kσ. In Figure 4.2, we plot the predictions for
different values of σ. The importance of the scale parameter σ is showcased.
Two points x, x′ are considered similar if ‖x − x′‖ . σ (that is kσ(x, x′) is
close to 1), whereas if ‖x− x′‖ & σ, then the points x and x′ are considered
different (the kernel kσ(x, x′) is small). In our example, the value σ reflects
the time scale on which we expect to have a significant temperature change.
If σ is chosen too small (say σ = 4 days), then the prediction will vary
quickly, as the model thinks that days that are one week apart could have
very different temperatures. On the opposite, if σ is too large (say σ = 200),
then we force the model to consider days that are 200 days apart as similar,
leading to serious underfitting. In practice, cross validation should be used
to tune the parameter σ.

4.4 Kernel Principal Component Analysis

Principal Component Analysis aims at finding the best k-dimensional sub-
space approximating a dataset of points x1, . . . ,xn in Rd. Let X be the n×d
matrix whose rows are given by the xis. The principal components v1, . . . , vk
of the dataset are found by computing the eigenvectors corresponding to the
k largest eigenvalues of the covariance matrix XX> (of size n× n). One can
then project the data points to the vector space spanned by the k principal
components to obtain a representation of the dataset in smaller dimension.

Principal Component Analysis relies on the idea that there exists a linear
subspace of low dimension that can explain well the dataset. If this is not the
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Figure 4.2: Kernel ridge regression on the weather forecast dataset with the
RBF kernel kσ for different values of σ.
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case, one can still hope that a linear subspace of low dimension can be a good
approximation of a transformation Φ(x1), . . . ,Φ(xn) of the dataset. Kernel
PCA consists in applying PCA to this transformed dataset. As before, we
can consider a very general framework, where the observations x1, . . . ,xn lie
in a general set X , endowed with a kernel k : X × X → R. Let Φ : X → H
be an associated feature map.

Computing the principal components of Φ(x1), . . . ,Φ(xn) requires to com-
pute the covariance matrix of the corresponding points, which is by definition
the matrix with entries 〈Φ(xi),Φ(xj)〉H = k(xi,xj). Therefore, kernel PCA
simply consists in computing the eigenvalues and eigenvectors of the Gram
matrix G with entries Gij = k(xi,xj).

Example 4.4.1. One of the best features of kernel methods is their versatility:
they can be applied not only to vectors, but to inputs living in any set X .
As an example, we consider the set of words X . The Word2Vec algorithm
provides a framework to learn feature maps from X to a vector space Rd

[Mikolov et al., 2013]. We use a pretrained model in the gensim Python li-
brary. This pretrained model gives a ready-to-use feature map Φ : X → Rd

with d = 25 that reflects meaningful similarities between different words. To
showcase the performance of this feature map, we use a dataset of n = 785
words either corresponding to a country (e.g. bengladesh, kenya, luxembourg)
or to an emotion (e.g. awful, cruelty, displeasure), see [Sharma, 2017]. Each
word xi is mapped to the vector Φ(xi), and we represent in Figure 4.3 the
projection of the vectors Φ(xi) on the plane spanned by the two first princi-
pal components of the transformed dataset (Φ(x1), . . . ,Φ(xn)). The points
corresponding to emotions and countries are clearly separated, showing that
the feature map Φ indeed captures the meaning of the words.
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Figure 4.3: PCA (with two principal components displayed) on the dataset
(Φ(x1), . . . ,Φ(xn)). Points corresponding to emotions are in blue, while
points coresponding to countries are displayed in orange.
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Chapter 5

Local averaging methods

In this chapter, we investigate a class of predictors, called local averaging
methods. Those methods are defined by computing a weighted average of
the different outputs yi from a sample of n observations (x1,y1), . . . , (xn,yn).
As such, those methods are simple to compute and to interpret. However,
they are best suited to low-dimensional setting as they suffer from the curse
of dimensionality.

5.1 The regression problem

Let (x1,y1), . . . , (xn,yn) be a training sample with distribution P . We focus
here on regression on the cube [0, 1]d: the set of inputs is X = [0, 1]d, the
set of outputs is Y = R, and we use the squared loss `(y, y′) = (y − y′)2.
Before studying local averaging methods, let us recall some basic facts on
regression. We proved in Chapter 1 that the Bayes predictor for the squared
loss is given by f ?P (x) = EP [y|x = x], the conditional expectation of y given
that x = x. We can always write y as

y = f ?P (x) + e (5.1)

where e is defined as e = y − f ?P (x). By construction, E[e|x] = 0. We may
therefore think of y as being obtained by corrupting f ?P (x) by some random
centered noise e. Note however that the distribution of the noise e may
depend on x.

Example 5.1.1. Each input x represents a street in a city (the city being
represented by a square [0, 1]2), and y represents the CO2 concentration at

69
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x. The output y will vary depending on when the CO2 concentration is
measured. In this setting, f ?P (x) represents the average CO2 concentration
at the street x. The distribution of the noise e may vary depending on x:
for example, some streets x in the city may have higher variations of CO2
concentration than others, so that E[e2|x = x] will be larger for those streets.

The Bayes risk R?
P is equal to

R?
P = EP [(f ?P (x)− y)2] = EP [e2]. (5.2)

Fix a function f : X → R. Let us compute RP (f) = EP [(f(x)−y)2]. To
do so, we first compute EP [(f(x)− y)2|x]:

EP [(f(x)−y)2|x] = EP [(f(x)− f ?P (x)− e)2|x]

= EP [(f(x)− f ?P (x))2|x] + 2E[(f(x)− f ?P (x))e|x] + E[e2|x]

= (f(x)− f ?P (x))2 + 2(f(x)− f ?P (x))E[e|x] + E[e2|x]

= (f(x)− f ?P (x))2 + E[e2|x],

where we use that E[e|x] = 0. By the law of total expectation,

RP (f) = EP [EP [(f(x)− y)2|x]]

= E[(f(x)− f ?P (x))2] + E[E[e2|x]]

= E[(f(x)− f ?P (x))2] +R?
P .

Therefore, the excess of risk of f is equal to

RP (f)−R?
P = EP [(f(x)− f ?P (x))2] =

∫
[0,1]d

(f(x)− f ?P (x))2dPx(x). (5.3)

Two information are relevant to understand this model: properties of the
noise e and regularity of the Bayes predictor f ?P . If f ?P is a smooth function
(for example Lipschitz continuous) and the noise e is small, then we expect
f ?P (x) to be similar to yi for xi close to x. This yields to the following heuritic.

Heuristic. Given an input x, the predictor f̂(x) should be similar to the
outputs yi for xi close to x.

We introduce a large class of simple predictors that satisfy this heuristic.
Let w1(x), . . . , wn(x) be weights with

∑n
i=1wi(x) = 1 and define

f̂w(x) =
n∑
i=1

wi(x)yi. (5.4)
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The weights wi(x) depend on the inputs x1, . . . ,xn. According to the heuris-
tic, the weights wi(x) should be high if x is close to xi, and low otherwise.

Let us write ei = yi− f ?p (xi). We make the following assumptions on the
model.

(A1) the Bayes predictor f ?P : [0, 1]d → R is α-Lipschitz continuous, that is,
for all x, x′ ∈ [0, 1]d,

|f ?P (x)− f ?P (x′)| ≤ α‖x− x′‖. (5.5)

(A2) the Bayes predictor f ?P is bounded by β > 0: for all x ∈ [0, 1]d, |f ?P (x)| ≤
β.

(A3) the error e is bounded: |e| ≤ σ for some σ > 0.

Under this set of assumptions, we can obtain a general decomposition
result. Let x ∈ [0, 1]d. We have

|f̂w(x)− f ?P (x)| =

∣∣∣∣∣
n∑
i=1

wi(x)(f ?P (xi) + ei)− f ?P (x)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

wi(x)(f ?P (xi)− f ?P (x))

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

wi(x)ei

∣∣∣∣∣
≤ α

n∑
i=1

|wi(x)|‖xi − x‖+

∣∣∣∣∣
n∑
i=1

wi(x)ei

∣∣∣∣∣ . (5.6)

We refer to the first term in this decomposition as the approximation error
App(x): it measures how the local average estimator is able to approximate
the Bayes predictor at the point x. The second term measures the inherent
noise present in the model, and we call it the fluctuation error at x, denoted
by Fluc(x). Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain

(f̂w(x)− f ?P (x))2 ≤ 2App(x)2 + 2Fluc(x)2. (5.7)

Let us see how this general decomposition can be used to bound the excess
of risk for different weighting schemes.
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5.2 Partition estimators

A partition of a set X is a collection A = (Aj)j=1,...,J of subsets of X that are

pairwise disjoint (that is Aj ∩Aj′ = ∅ if j 6= j′) and such that
⋃J
j=1 Aj = X .

Definition 5.2.1 (Partition estimator). Consider (x1,y1), . . . , (xn,yn) a
training sample of size n from a distribution P , with inputs xi ∈ [0, 1]d and
outputs yi ∈ R. Let A be a partition of [0, 1]d. For x ∈ X , we let A(x) be
the the element Aj of the partition such that x ∈ Aj. We define the weights
wi : [0, 1]d → R associated with the partition A by

wi(x) :=
1{xi ∈ A(x)}∑n
i′=1 1{xi′ ∈ A(x)}

. (5.8)

If
∑n

i′=1 1{xi′ ∈ A(x)} = 0, then, by convention, we let wi(x) = 0. The

partition estimator f̂A associated with the partition A is the local average
estimator with weights wi. The predictor f̂A is also called a regressogram.

The predictor f̂A has a very simple structure. For j = 1, . . . , J , let Ij be
the set of indexes i such that xi ∈ Aj, and let nj be the size of Ij. If nj = 0,

then f̂w(x) = 0 for x ∈ Aj. Otherwise, if nj > 0 and x ∈ Aj, the predictor

f̂A(x) is equal to

f̂A(x) =
n∑
i=1

wi(x)yi =

∑n
i=1 1{xi ∈ Aj}yi∑n
i′=1 1{xi′ ∈ Aj}

=
1

nj

∑
i∈Ij

yi.

To put it otherwise, the prediction f̂w is constant on each set Aj, equal to
the average of the outputs yi such that the corresponding input xi belongs
to Aj.

Example 5.2.2. Let X = [0, 1]d and let L > 0 be an integer. For 1 ≤
j1, . . . , jd ≤ L, let ~j = (j1, . . . , jd) and

A~j =

[
j1 − 1

L
,
j1

L

)
× ·
[
jd − 1

L
,
jd
L

)
. (5.9)

The cubes A~j for 1 ≤ j1, . . . , jd ≤ L define a partition AL of X into a grid

of cubes of side length 1/L. The predictor f̂AL =: f̂L associated with the
cube partition is constant on each of these cubes. For d = 1, this is simply a
histogram.
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The remainder of this section is dedicated to analyzing the cube partition
estimator. We denote by f̂L the partition estimator with partition AL. Let
us first give a short summary of the proof strategy. We know that f̂L(x) is
equal to the average of the outputs yi for xi being in the same cube as x.
As yi = f ?P (xi) + ei, and as xi is at distance 1/L from x, the output yi is
at distance α/L + |ei| from f ?P (x) (see Figure 5.1). When we average the
different outputs yi, the different error terms ei will cancel out on average,
so that we get an error of order α/L + σ/

√
nj̃. The conclusion is obtained

by controlling nj̃, which follows a binomial random variable.

Let us now turn to the rigorous mathematical analysis. Fix an index ~j,
and assume for now that nj̃ > 0. For x ∈ A~j, it holds that

|App(x)| ≤ α2

(
n∑
i=1

|wi(x)|‖xi − x‖

)2

≤ α2

 1

nj̃

∑
i∈I~j

‖xi − x‖

2

≤ α2dL−2,

(5.10)

where the last inequality comes from that ‖x − xi‖ ≤
√
d/L when x and xi

belong to the same cube A~j.

The fluctuation term is equal to

Fluc(x) =
1

nj̃

∑
i∈I~j

ei. (5.11)

Conditionally on I~j, the random variables (ei)i∈I~j are independent and
identically distributed. Therefore, the conditional expectation of the fluctu-
ation error with respect to the training sample is equal to

E
[

Fluc(x)2
∣∣ I~j] =

1

nj̃
2

∑
i∈I~j

|ei|2 ≤
σ2

nj̃

. (5.12)

From (5.7), we obtain

E[(f̂L(x)− f ?P (x))21{nj̃ > 0}] ≤ 2
α2d

L2
+ 2E[1{nj̃ > 0}σ

2

nj̃

]. (5.13)
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Figure 5.1: Decomposition of the distance between yi and f ?P (x) into the
stochastic error term ei and the distance between f ?P (x) and f ?P (xi), which
is bounded thanks to the Lipschitz property of f ?P .
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It remains to control E[1{nj̃ > 0}nj̃
−1]. Note that nj̃ follows a binomial

random variable of parameters n and p~j := P (x ∈ A~j). Indeed, nj̃ is the sum
over all observations of independent Bernoulli random variables, equal to 1
if the observation is in A~j, and 0 otherwise.

Lemma 5.2.3. Let N be a binomial random variable of parameter n and p.
Then,

E[1{N > 0}N−1] ≤ 2

pn
. (5.14)

Proof. We recall the formula 1
k+1

(
n
k

)
= 1

n

(
n+1
k+1

)
. The formula for the density

of a binomial random variable implies that

E[1{N > 0}N−1] =
n∑
k=1

(
n

k

)
pk(1− p)n−k 1

k

≤
n∑
k=1

(
n

k

)
pk(1− p)n−k 2

k + 1

≤ 2

n+ 1

n∑
k=1

(
n+ 1

k + 1

)
pk(1− p)n−k

≤ 2

n+ 1

n+1∑
l=2

(
n+ 1

l

)
pl−1(1− p)n−l+1

≤ 2(1− p)
p(n+ 1)

n+1∑
l=2

(
n+ 1

l

)
pl(1− p)n−l

≤ 2(1− p)
p(n+ 1)

≤ 2

pn
.

Using the lemma and (5.13) yields

E[(f̂L(x)− f ?P (x))21{nj̃ > 0}] ≤ 2
α2d

L2
+

4σ2

p~jn
. (5.15)

When nj̃ = 0, then f̂L(x) = 0 by convention. In that case, we obtain

E[(f̂L(x)− f ?P (x))21{nj̃ = 0}] = f ?P (x)2P(nj̃ = 0) = f ?P (x)2(1− p~j)
n

≤ β2 exp(−np~j),
(5.16)
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where we use Assumption (A2) and the formula for the probability of a bino-
mial random variable being equal to 0. Putting the two estimates together
yields

E[(f̂L(x)− f ?P (x))2] ≤ 2
α2d

L2
+

4σ2

p~jn
+ β2 exp(−np~j). (5.17)

Recall from (5.3) that the excess of risk of f̂L is equal to

RP (f̂L)−RP (f ?P ) =

∫
[0,1]d

(f̂L(x)− f ?P (x))2dPx(x).

We obtain the following bound on the expected excess of risk (where expec-
tation represents expectation with respect to the training sample):

E[RP (f̂L)−RP (f ?P )] =

∫
[0,1]d

E[fL(x)− f ?P (x))2]dPx(x)

=
∑
~j

∫
A~j

E[fL(x)− f ?P (x))2]dPx(x)

≤
∑
~j

∫
A~j

(2
α2d

L2
+

4σ2

p~jn
+ β2 exp(−np~j))dPx(x)

≤
∑
~j

p~j(2
α2d

L2
+

4σ2

p~jn
+ β2 exp(−np~j))

≤ 2
α2d

L2
+

4σ2Ld

n
+ β2

∑
~j

p~j exp(−np~j)),

where we use at the last line that there are exactly Ld indexes ~j. To conclude,
we need to bound the last term in the above equation. One can check that
this sum is maximized in the case where all the probabilities p~j are equal:

this sum is therefore smaller than exp(−nL−d).

Theorem 5.2.4 (Excess of risk of the cube partition estimator). Assume
that conditions (A1)-(A3) hold. Then, the cube partition estimator f̂L with
side length 1/L satisfies

E[RP (f̂L)−RP (f ?P )] ≤ 2
α2d

L2
+

4σ2Ld

n
+ β2 exp(−nL−d). (5.18)



5.3. NADARAYA-WATSON ESTIMATORS 77

In particular, if L = cn1/(d+2) for some constant c, we obtain a bound of the
form

E[RP (f̂L)−RP (f ?P )] ≤ Cn−2/(d+2) (5.19)

for some other constant C.

What should we take away from the above theorem? First, a good news:
the partition estimator is consistent, as the excess of risk converges to 0.
However, the rate of convergence gets increasingly slow when the number of
features d increases. We say that partition estimators suffer from the
curse of dimensionality. For example, for d = 18, the rate of convergence
is equal to n−0.1, which is only equal to 0.1 even for a number of observations
equal to n = 1010. This suggests that partition estimators should only be
used in low-dimensional settings.

Example 5.2.5. In this example, we are exploring whether there is a relation
between the oil price and the volume of oil sold at a given day at the Brent
Complex, a physically and financially traded oil market based around the
North Sea of Northwest Europe. The pairs (x1,y1), . . . , (x1,y1) represent an
oil price (x value) and a volume sold (y value). The dataset was downloaded
from Kaggle1. In this example d = 1 and there are n = 2859 observations.
Theorem 5.2.4 suggests that we should choose L of order n1/3 ' 15 when
designing a partition estimator. This is what is done in Figure 5.2. We also
plot the test error (obtained by randomly splitting the dataset in a training
set and a testing set) as a function of L. We see that the minimum of the test
error is obtained for L roughly of order 50: the theorem only gives an order
of magnitude of what should be a good value of L, and nothing more precise.
Moreover, we encounter once again two well-known phenomena: underfitting
for L too small, and overfitting for L too large. In practice, L should be
selected through cross-validation.

5.3 Nadaraya-Watson estimators

The partition estimator of the previous section can be summarized in one
sentence: the prediction f̂L(x) is equal to the average of the outputs yi

corresponding to the inputs xi being in the same cube as x. In this section,

1See https://www.kaggle.com/datasets/psycon/historical-brent-oil-price-

from-2000-to-202204.

https://www.kaggle.com/datasets/psycon/historical-brent-oil-price-from-2000-to-202204
https://www.kaggle.com/datasets/psycon/historical-brent-oil-price-from-2000-to-202204
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Figure 5.2: Top: prediction f̂L0 for L0 = n1/3. Bottom: Expected risk for
different values of L. The vertical line indicates L0. The minimum excess of
risk is attained for L roughly equal to 3L0.
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we investigate a variation on this same idea. We choose as a prediction at
the point x the average of the outputs yi such that xi is at distance less than
h from x, where h > 0 is a fixed parameter. This is equivalent to defining a
local averaging estimator with weights

wi(x) =
1{‖x− xi‖ ≤ h}∑n
i′=1 1{‖x− xi′‖ ≤ h}

.

This can be generalized to other weighting schemes.

Definition 5.3.1. Consider (x1,y1), . . . , (xn,yn) a training sample of size
n from a distribution P , with inputs xi ∈ [0, 1]d and outputs yi ∈ R. Let
K : Rd → R be a function with

∫
K = 1 and let h > 0. Let Kh be the

function defined by Kh(x) = h−dK(x/h) for x ∈ Rd. The Nadaraya-Watson
estimator f̂NW

h with kernel Kh is defined as the local averaging estimator with
weights at x ∈ [0, 1]d equal to

wi(x) :=
Kh(x− xi)∑n
i′=1 Kh(x− xi′)

. (5.20)

The word ”kernel” in the above definition is the one that is commonly
used by statisticians. Note however that the local averaging method is not
a kernel method and that the two should not be confused.

The analysis of the Nadaraya-Watson estimator is more complex than
the one of the partition estimator, and we refer the interested reader to
[Tsybakov, 2008, Chapter 1.5]. Let us here only mention that under as-
sumptions similar to assumptions (A1)-(A3), it is possible to show that the
Nadaraya-Watson estimator f̂h satisfies

E[RP (f̂NW
h )−RP (f ?P )] ≤ Cn−2/(d+2), (5.21)

where h is of order n−1/(d+2) and C is a constant depending on the parameters
of the model. Therefore, the Nadaraya-Watson estimator attains the same
rate of convergence as the partition estimator and also suffers from the curse
of dimensionality. This rate can be improved should the Bayes predictor f ?P
be k-times differentiable. In this case, one can build a Nadaraya-Watson
estimator attaining a rate of convergence of order n−2k/(d+2k).

Example 5.3.2. A simple choice of kernel is given by the gaussian kernel
defined by K(u) = 1/(2π)d/2 exp(−‖u‖2/2) for u ∈ Rd. We implement the
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Figure 5.3: Nadaraya-Watson predictor f̂NW
h for different values of h on the

oil dataset.

Nadaraya-Watson estimator on the same dataset as in Example 5.2.5, for
the gaussian kernel with different choices of bandwidths h. Once again, the
performance of the estimator will crucially depend on h (see Figure 5.3), a
parameter which should be selected thanks to cross-validation to avoid both
underfitting and overfitting.

5.4 Nearest-neighbor methods

Here is a very simple idea to make a prediction f̂(x) at x ∈ [0, 1]d: look
at the point xi the closest to x, and choose f̂(x) = yi. Such a prediction
is called the 1-nearest-neighbor estimator. A variation of this scheme is the
k-nearest-neighbor (or k-NN) estimator, which is defined by averaging the
outputs yi corresponding the k inputs that are the closest from x.

Definition 5.4.1. Consider (x1,y1), . . . , (xn,yn) a training sample of size
n from a distribution P , with inputs xi ∈ [0, 1]d and outputs yi ∈ R. Let
k ≥ 1 be an integer. For x ∈ [0, 1]d, we order the inputs xi according to their



5.4. NEAREST-NEIGHBOR METHODS 81

Figure 5.4: Definition of the indexes i1(x), . . . , i4(x) .

distance to x:

‖x− xi1(x)‖ ≤ ‖x− xi2(x)‖ ≤ · · · ≤ ‖x− xin(x)‖. (5.22)

We let Ik(x) = {i1(x), . . . , ik(x)} and define the weights

wi(x) =

{
1
k

if i ∈ Ik(x)

0 otherwise.
(5.23)

The k-NN estimator f̂NN
k is the local averaging estimator associated with the

weights wi.

The k-NN estimator at a point x is equal to

f̂NN
k (x) =

1

k

∑
i∈Ik(x)

yi, (5.24)

that is we average the outputs of the k nearest inputs from x. The approxi-
mation error is equal to

App(x) := α
n∑
i=1

|wi(x)|‖xi − x‖ =
α

k

∑
i∈Ik(x)

‖xi − x‖, (5.25)
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that is the average distance between x and its k-nearest neighbors. The
fluctuation error is given by

Fluc(x) :=
n∑
i=1

wi(x)ei =
1

k

∑
i∈Ik(x)

ei. (5.26)

Conditionally on Ik(x), this is a sum of i.i.d. random variables bounded by
σ2. We thus obtain as in Section 5.2 that

E[Fluc(x)2] ≤ σ2

k
. (5.27)

The main part of the analysis of the k-NN estimator consists in controlling
the distance ‖x − xik(x)‖ between a point x and its kth nearest neighbor,
allowing us to bound the approximation error App(x). Let us first consider
the case k = 1. To make our life easier, we will assume that the distribution
Px of the inputs xi has a lower bounded density on the cube.

(A4) The distribution Px has a density p on [0, 1]d. Furthermore, there exists
a constant pmin > 0 such that p(x) ≥ pmin for every x ∈ [0, 1]d.

Condition (A4) ensures that the inputs xis cover all regions of the cube,
and that none is missed out (which would be the case if the density p is zero
on that region).

Lemma 5.4.2. Assume that condition (A4) holds and let x ∈ [0, 1]d. Let ωd
be the volume of the unit ball in Rd. Then, for every t ≥ 0,

P(‖x− xi1(x)‖ ≥ t) ≤ exp(−ωd2−dpminnt
d). (5.28)

Proof. The condition ‖x−xi1(x)‖ ≥ t is satisfied if and only if the ball B(x, t)
centered at x of radius t does not intersect {x1, . . . ,xn}. The number N of
inputs xi that fall in the ball B(x, t) follows a binomial random variable of
parameter n and P (B(x, t)). Therefore,

P(‖x− xi1(x)‖ ≥ t) = (1− P (B(x, t))n ≤ exp(−nP (B(x, t))). (5.29)

The probability P (B(x, t)) is lower bounded by∫
[0,1]d

1{u ∈ B(x, t)}p(u)du ≥ pmin

∫
[0,1]d

1{u ∈ B(x, t)}du ≥ pmin
ωd
2d
td.

Indeed, at least a fraction of 1/2d of the ball B(x, t) intersects the cube [0, 1]d

(the worst case being attained for x being a corner of the cube).
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Going from a bound on the tail probability to a bound on the second
moment is possible thanks to the next lemma.

Lemma 5.4.3. Let z be a nonnegative random variable. Then

E[z2] = 2

∫ +∞

0

uP(z ≥ u)du. (5.30)

Proof. We have

E[z2] = E[

∫ +∞

0

1{z2 ≥ t}dt] =

∫ +∞

0

P(z2 ≥ t)dt.

The change of variable t = u2 gives the result.

Applying this lemma yields that It holds that

E[‖x− xi1(x)‖2] = 2

∫ +∞

0

uP(‖x− xi1(x)‖ ≥ u)du

≤ 2

∫ +∞

0

u exp(−ωd2−dpminnu
d)du.

This last integral can be computed through the change of variables v =
ωd2

−dpminnu
d and by recognizing the expression of the Gamma function2.

Lemma 5.4.4. Assume that condition (A4) holds and let x ∈ [0, 1]d. Then,
it holds that

E[‖x− xi1(x)‖2] ≤ γ

n2/d
, (5.31)

where γ = 8Γ(2/d)

d(ωdpmin)2/d
.

We consider now the case k > 1. In this case, the approximation error
satisfies

E[App(x)2] ≤ α2E

(1

k

∑
i∈Ik

‖xi − x‖

)2


≤ α2

k
E

[∑
i∈Ik

‖xi − x‖2

]
by Jensen inequality.

(5.32)

2See https://en.wikipedia.org/wiki/Gamma_function.

https://en.wikipedia.org/wiki/Gamma_function
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Figure 5.5: The red squares indicate the 3 nearest neighbors from the black
dot x. Each color represents a group Gl of observations, whereas the crossed
point is the nearest neighbor xjl to x in that group. The set of points
{xj1 , . . . ,xjk} is always farther from x on average than the set of k-nearest
neighbors.
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The sum of squared distances is bounded thanks to an elementary (but ele-
gant) idea: for any set J of k indexes, we have∑

i∈Ik

‖xi − x‖2 ≤
∑
j∈J

‖xj − x‖2. (5.33)

Indeed, if we pick some index j0 not in Ik in our set J , then the sum of the
squared distances over indexes in J can always be decreased by replacing j0

by one of the indexes of Ik that is not in J . The set J is built by splitting
the set of observations x1, . . . ,xn in k different groups of size roughly n/k.
For sake of simplicity, we will assume that n/k is an integer and let Gl =
{xn(l−1)/k+1, . . . ,xnl/k} for l = 1, . . . , k, that is G1 contains the first n/k
observations, G2 the next n/k observations, and so on. We let jl be the
index of the nearest neighbor of x in the set Gl. See also Figure 5.5. Then,
‖x−xjl‖2 is the squared distance between a point x and its nearest neighbor
from a sample of n/k observations with distribution Px. According to Lemma
5.4.4, we have

E[‖x− xjl‖2] ≤ γ

(n/k)2/d
.

We define J = {j1, . . . , jk}. Equation (5.33) then yields

E[
∑
i∈Ik

‖xi − x‖2] ≤ E[
∑
j∈J

‖xj − x‖2]

≤
k∑
l=1

E[‖x− xjl‖2] ≤ kγ

(
k

n

)2/d

.

(5.34)

Putting together (5.27), (5.32) and this last equation yields the following
theorem.

Theorem 5.4.5 (Excess of risk of the k-nearest neighbor estimator). Assume
that conditions (A1), (A2) and (A4) hold. Then, the k-nearest neighbor
estimator f̂NN

k satisfies

E[RP (f̂NN
k )−RP (f ?P )] ≤ 2α2γ

(
k

n

)2/d

+ 2
σ2

k
. (5.35)

In particular, if k = cn2/(d+2) for some constant c, we obtain a bound of the
form

E[RP (f̂NN
k )−RP (f ?P )] ≤ Cn−2/(d+2) (5.36)

for some larger constant C.
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Figure 5.6: Top: the 1-NN estimator on a subsample of size n = 50. Middle:
the k-NN estimator on the full dataset for the theoretical value k = n2/3 '
200. Bottom: Expected risk for different values of k.
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For an optimal choice of k, the excess of risk of the k-NN estimator is
of the same order n−2/(d+2) as the excess of risk of the partition estimator
of Section 5.2. In particular, the k-NN estimator also suffers from the curse
of dimensionality. One can actually prove that, in a certain sense, the curse
of dimensionality is unavoidable if we only make assumptions (A1)-(A4) on
the Bayes estimator f ?P . More structural assumptions on the function f ?P are
needed to obtain better rates of convergence in high dimension d� 1.

Example 5.4.6. Eventually, we apply the k-NN estimator to the oil dataset.
First, for visualization purposes, we plot the k-NN estimator for k = 1 on a
subset of n = 50 observations, see Figure 5.6. Theorem 5.4.5 predicts that a
choice of k of order n2/3 is optimal for such a problem: in our example, this
gives a value of k ' 200, and the corresponding k-NN estimator is displayed
in Figure 5.6. We then split the set of observations into a train set and a
test set, while recording the excess of risk on the test set of f̂NN

k for different
values of k. It appears that k = 50 is enough to obtain a small excess of
risk. The theorem only gives a rough order of magnitude of what k should
be and not a precise value. Cross-validation should be implemented to select
the parameter k in practice.
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Chapter 6

Clustering methods

In previous chapters, we focused on the problem of supervised learning.
For instance, in the image classification problem, we are given n training
images x1, . . . ,xn that represent a car (yi = +1) or a plane (yi = −1).
The goal is then to use these examples to predict whether a new image
represents a car or a plane. We focus in this chapter on a different setting,
called unsupervised learning. In this setting, we only have access to the
inputs x1, . . . ,xn, and not to the outputs. The goal is to create groups
of inputs (called clusters) such that the inputs are similar to each other in
each cluster, whereas the inputs in different clusters are dissimilar. The
process of creating those different clusters is called clustering. In the object
identification example, a clustering method aims at identifying two groups
having different features in the set of observations x1, . . . ,xn (corresponding
to cars and planes) without having access to any label. We present two
different clustering methods: the k-means method, that can be applied to
observations in Rd, and spectral clustering, that take as an input a graph of
similarities between data points.

6.1 The k-means problem

Let X = (x1, . . . , xn) be a collection of n points in Rd. Assume that we want
to summarize this set of n points with just one point x∗. What should be
this point? A natural idea is to choose

x∗ =
x1 + · · ·+ xn

n
, (6.1)

89
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Figure 6.1: The k-means of two sets of points, for k = 3. For the second set
of points, there is no uniqueness of the k-means.

the average of the n points. The average x∗ is actually the minimizer of the
function

y ∈ Rd 7→ 1

n

n∑
i=1

‖y − xi‖2. (6.2)

This can for instance be seen by computing for the gradient of the above
function, which is zero for y = x∗. Assume now that we want to summarize
the set using k points. A generalization of (6.2) consists in minimizing

Fk,X : (y1, . . . , yk) ∈ (Rd)k 7→ 1

n

n∑
i=1

min
l=1,...,k

‖yl − xi‖2, (6.3)

that is we are looking for k representatives (called centroids) such that the
sum of the squared distances between each xi and its closest centroid is
minimal. One call the minimizer Fk,X the set of k-means of X, that we
denote by (y∗1, . . . , y

∗
k). Note that the function Fk,X is non-convex in general

(see Figure 6.2). Therefore, there might be several minimizers of Fk,X, so we
should in theory say ’a’ set of k-means rather than ’the’ set of k-means. We
give in Figure 6.1 an example of data points x1, . . . , xn where several k-means
exist.

The k-means (y∗1, . . . , y
∗
k) of the set of points X divide X into k clusters,

by assigning each xi to the lth cluster if y∗l is centroid the closest to xi. The
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Figure 6.2: Graph of the function F2,X : (Rd)2 → R for some set of points
X ⊂ Rd, with d = 1. The function is not convex.
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simplest algorithm to compute the set of k-means is called Lloyd’s algorithm,
presented in Algorithm 3.

Algorithm 3: Lloyd’s algorithm

1 Initialization: centroids y0
1, . . . , y

0
k ∈ Rd;

2 for t = 0, . . . , T − 1 do
3 for l = 1, . . . , k do
4 let I tl = {i ∈ {1, . . . , n}, ytl is the centroid the closest to xi};
5 let ntl be the number of elements in I tl ;

6 end
7 for l = 1, . . . , k do
8 let yt+1

l = 1
ntl

∑
i∈Itl

xi;

9 end

10 end
11 Output: yT1 , . . . , y

T
k ∈ Rd;

Each step of Lloyd’s algorithm is made of two substeps. First, we assign
every point xi to a cluster: the cluster l is chosen if xi is the closest to ytl .
Second, we update the centroid by defining yt+1

l as the average of the points
xi of the cluster l.

Proposition 6.1.1. Lloyd’s algorithm coincides with Newton’s method ap-
plied to the function Fk,X.

Proof. The function Fk,X is twice differentiable at (y1, . . . , yk) if there are no
points of the set X that are equidistant to some centroid yl. We will assume
that this condition is always satisfied. In this case, defining the sets Ils and
the numbers nls as in Algorithm 3, we can compute Fk,X:

Fk,X(y1, . . . , yk) =
1

n

n∑
i=1

min
l=1,...,k

‖yl − xi‖2

=
1

n

k∑
l=1

∑
i∈Il

‖xi − yl‖2.

(6.4)

The gradient of ∇Fk,X(y1, . . . , yk) is a vector of size dn that we write as∇y1Fk,X(y1, . . . , yk)
...

∇ykFk,X(y1, . . . , yk)

 ,



6.1. THE K-MEANS PROBLEM 93

where ∇ylFk,X(y1, . . . , yk) is the partial gradient of Fk,X with respect to yl
(that is a vector in Rd). Let us compute ∇y1Fk,X(y1, . . . , yk). In (6.4), only
the first term of the sum depends on y1. Therefore,

∇y1Fk,X(y1, . . . , yk) =
2

n

∑
i∈I1

(yl − xi) =
2n1

n

(
y1 −

1

n1

∑
i∈I1

xi

)
. (6.5)

Therefore,

∇Fk,X(y1, . . . , yk) =
2

n


n1

(
y1 − 1

n1

∑
i∈I1 xi

)
...

nk

(
yk − 1

nk

∑
i∈Ik xi

)
 .

The gradient ∇Fk,X(y1, . . . , yk) is decomposed into k blocks, where the lth
block depends linearly on yl. The Hessian ∇2Fk,X(y1, . . . , yk) is therefore a
diagonal matrix equal to

2

n

n1Idd
. . .

nkIdk

 (6.6)

By definition, an iterate of Newton’s method is given byy
′
1
...
y′k

 =

y1
...
yk

−∇2Fk,X(y1, . . . , yk)
−1∇Fk,X(y1, . . . , yk)

=

y1
...
yk

−


1
n1

Idd
. . .

1
nk

Idk



n1

(
y1 − 1

n1

∑
i∈I1 xi

)
...

nk

(
yk − 1

nk

∑
i∈Ik xi

)


=

y1
...
yk

−
y1 − 1

n1

∑
i∈I1 xi

...
yk − 1

nk

∑
i∈Ik xi


=


1
n1

∑
i∈I1 xi
...

1
nk

∑
i∈Ik xi

 .

Those iterates are exactly the one given by Lloyd’s algorithm.
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Figure 6.3: With bad initialization, Lloyd’s algorithm may converge to a
(very) bad configuration. The three centroids computed by Lloyd’s algorithm
with a bad initialization are displayed in red, and the associated clusters in
respectively green, orange, and blue.

When using Lloyd’s algorithm, we are applying Newton’s method on the
function Fk,X, that is in general not convex. It is therefore not surprising
that the performance of Lloyd’s algorithm will crucially depend on the ini-
tialization. If the initialization (y0

1, . . . , y
0
k) is close enough to the minimizers

(y∗1, . . . , y
∗
k), then Lloyd’s algorithm will converge very quickly to the mini-

mizer (as expected for Newton’s method). However, with bad initialization,
the iterates of Lloyd’s algorithm will remain stuck in local minima that corre-
spond to configurations far from being optimal, see Figure 6.3. The k-mean++
algorithm gives a procedure to find a good initialization for Lloyd’s algorithm
[Arthur and Vassilvitskii, 2006]. It is the default initialization method in the
Python scikit-learn library, and shows good performance in practice.

Example 6.1.2. Add example.

6.2 Spectral clustering

Spectral clustering is in many ways an improvement upon k-means. Unlike
k-means, that can only be applied to observations in Rd, spectral clustering
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Figure 6.4: The ε-neighborhood graph of a set of points in R2.

can be applied to any set of observations, as long as a notion of similarity
between the observations is defined.

Definition 6.2.1. A weighted graph G := G(W ) with n vertices is described
by a n × n matrix of weights W = (Wij)1≤i,j≤n, where the weights Wij are
nonnegative and symmetric (that is Wij = Wji).

Some examples of weighted graphs include:

1. The weight matrix W only contains 0 and 1. In this case, we think of
G as representing a non-weighted graph: if Wij = 1, then there is an
edge between the vertex i and the vertix j, and if Wij = 0 then there
is no edge.

2. A particular example of non-weighted graph is the ε-neighborhood
graph. Let x1, . . . , xn ∈ Rd and let ε > 0. We define Wij = 1 if
‖xi − xj‖ ≤ ε, and 0 otherwise: we connect two points by an edge if
and only if they are at distance less than ε.

3. A variation of this construction is the gaussian graph, where the weights
Wij are given by exp(−‖xi − xj‖2/(2σ2)) for some parameter σ > 0.
Two nearby points are assigned a large weight, whereas if two points
xi and xj are far away, then the weight Wij is small.
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Figure 6.5: The σ-gaussian graph of a set of points in R2. Thicker edges
indicate higher weights.

Spectral clustering allows one to detect the presence of clusters in a
weighted graph. Informally, a cluster is a set of vertices such that the similar-
ity between two points of the cluster is high, whereas the similarity between
a point of a cluster and a point outside the cluster is small. In the graph
setting, the similarity between vertices is given by the weight matrix W .

Definition 6.2.2. Let G be a weighted graph with weight matrix W . Let
i ∈ {1, . . . , n}.

1. The neighbors of i are the vertices j such that Wij > 0. We then
write i ∼G j.

2. The degree Di of a vertex i is defined as Di =
∑n

j=1Wij. We let D be
the n× n diagonal matrix with entries Di on the diagonal. We call D
the degree matrix.

3. We say that two vertices i and j are connected if there exists a path
i = i1, i2, . . . , ik−1, ik = j such that il ∼G il+1 for every 1 ≤ l ≤ k − 1.

4. A connected component in G is a set C of vertices in G such that all
pairs of vertices in C are connected, but no vertices in C is connected
to a vertex not in C.
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Figure 6.6: Top: a graph with two connected components. Bottom: a graph
with a single connected component, but two clusters.
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A first natural idea is to define the clusters in our graph as the con-
nected components. By construction, similarity is positive between points
in a connected component, but zero between two points in different clusters.
However, this notion is not robust to noise, see Figure 6.6. Indeed, the top
graph in Figure 6.6 has two connected component, but it suffices to add one
edge (bottom graph) to create a graph with a single connected component.
We still want to think about the bottom graph as containing two clusters.

To built upon this first idea, we need to make the transform the notion of
”being connected” into a quantitative notion, that is we need to make sense
of the sentence ”How connected are two vertices?”. Here is a very elegant
way to do so. Let i and j be two vertices. Consider a particle p starting at i
and that will randomly walk around the graph: at step t, if the particle p is
at vertex k, then it will move to one of the neighbors l of k with probability
equal to Qkl = Wkl/Dk. Informally, if the particle p takes a lot of time to go
from vertex i to vertex j, then it means that the two vertices are not well-
connected. On the opposite, the random particle p goes on average from i to
j in a short amount of time, then i and j can be considered closed.

Definition 6.2.3. We define the probability transition matrix Q as D−1W ,
its entries are given by Qij = Wij/Di. The (random walk) Laplacian1 of
the graph G is the matrix L = Idn −Q.

The spectral properties of the Laplacian (namely the eigenvalues and the
eigenvectors of the matrix L) contain relevant information on the geometry
of the graph G, see Figure 6.7. Let A ⊂ {1, . . . , n}. We let eA be the vector
in Rn with entries (eA)i = 1 if i ∈ A and (eA)i = 0 otherwise.

Proposition 6.2.4. Let G be a weighted graph with associated Laplacian L.

1. All the eigenvalues of L are nonnegative.

2. The matrix L has always 0 as an eigenvalue.

3. The multiplicity of 0 as an eigenvalue is the number k of connected
components of the graph G. An orthogonal basis of the eigenspace as-
sociated to the eigenvalue 0 is given by (eC1 , . . . , eCk) where C1, . . . , Ck
are the connected components of G.

1The name Laplacian is also used in calculus to refer to a differential operator. The
interested reader may find connections between the two concepts in the Appendix.
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Figure 6.7: A basis of two eigenvectors of the eigenspace of L corresponding
to the eigenvalue 0. The color of the vertex i can go from purple (the ith
entry ui of the eigenvector u is equal to 0) to red (ui is equal to 1).
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Proof. Introduce the matrix L′ = D1/2LD−1/2. The eigenvalues and eigen-
vectors of L and L′ are related: for λ ∈ R and u ∈ Rn, it holds that Lu = λu
if and only if L′v = λv, where v = D1/2u. In particular, L and L′ have the
same eigenvalues, and the eigenvectors of L and L′ are related by the simple
relation v = D1/2u.

1. It suffices to show that L′ is positive semi-definite. Let v ∈ Rn. It holds
that

v>L′v = v>v − v>D−1/2WD−1/2v

=
n∑
i=1

v2
i −

∑
1≤i,j≤n

Wij
vivj√
DiDj

=
n∑
i=1

Di

Di

v2
i −

∑
1≤i,j≤n

Wij
vivj√
DiDj

=
∑

1≤i,j≤n

Wij
v2
i

Di

−
∑

1≤i,j≤n

Wij
vivj√
DiDj

(by definition of Di)

=
1

2

( ∑
1≤i,j≤n

Wij
v2
i

Di

− 2
∑

1≤i,j≤n

Wij
vivj√
DiDj

+
∑

1≤i,j≤n

Wij
v2
i

Di

)

=
1

2

( ∑
1≤i,j≤n

Wij
v2
i

Di

− 2
∑

1≤i,j≤n

Wij
vivj√
DiDj

+
∑

1≤i,j≤n

Wij

v2
j

Dj

)

=
1

2

∑
1≤i,j≤n

Wij

(
vi√
Di

− vj√
Dj

)2

≥ 0, (6.7)

where we switch the roles of the dummy variables i and j in the last
sum at the second to last line. All in all, this implies that L′ is positive
semi-definite, and therefore so is L.

2. It is clear from (6.7) that the vector v = (
√
D1, . . . ,

√
Dn) is an eigenvec-

tor of L′ with associated eigenvalue 0. Therefore 0 is also an eigenvalue
of L.

3. Note also that the D−1/2v is an eigenvector of L, which is the vector
with 1 in all of its entries. Assume that k = 1 (there is only one
connected component), and let us show that this is the only eigenvector
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of L′ (up to a constant). Having v>L′v = 0 is equivalent to having
vi/
√
Di = vj/

√
Dj for every vertices i, j with Wij > 0. As all the

vertex are connected (because k = 1), we can always find a path from
any vertex i1 to some other vertex im. Going from vertex to vertex
in this path, we see that the quantity vi/

√
Di stays constant along

that path. In particular, this implies that the vector v must satisfy
vi/
√
Di = cst for every vertex i. This implies that v = (

√
D1, . . . ,

√
Dn)

is the only eigenvector of L′ associated with 0 (up to a multiplicative
constant). Therefore, D−1/2v is the only eigenvector of L associated
with 0 (up to a multiplicative constant).

Let us now treat the case k > 1. In this case, up to relabelling the
indexes, we can write the matrix L as a block diagonal matrix

L =

L1
...
Lk


where the block Ll is the Laplace matrix associated with the subgraph
given by the connected component Cl. As 0 is an eigenvalue with mul-
tiplicity 1 of each of the matrix Ll, it is an eigenvalue of L with multi-
plicity k. Furthermore, a basis of the eigenspace of L associated with
0 is given by one eigenvector of each of the block Ll with 0 eigenvalue.
According to the case k = 1, the vectors eCl are such eigenvectors.

To put it simply, the multiplicity of 0 as an eigenvalue of the Laplacian L
gives the number of connected components, while the associated eigenvectors
exactly give the said connected components: all the relevant information on
the connected components is given by the spectral properties of the Lapla-
cian matrix. However, the Laplacian matrix is a much richer object, that is
more robust to perturbation. Indeed, if we consider a graph with two large
connected components, and add a single edge between those two components,
then only one single connected component remain, as said earlier. The mul-
tiplicity of 0 in the Laplacian matrix has moved from 2 to 1. However, one
can show that there is now a nonzero eigenvalue λ in the spectrum of L that
is very small. Also, an eigenvector corresponding to this eigenvalue will be
approximately 0 on one connected component and approximately 1 on the
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other, that is to say the eigenvector is an approximation of the eigenvector
eC1 given by Proposition 6.2.4. This phenomenon is showcased in Figure 6.8.

The spectral clustering method relies on this phenomenon, see Algorithm
4. For i ∈ {1, . . . , n}, let ei = e{i} be the vector in Rn representing the vertex
i. In the case where G contains exactly k connected components, one has
〈ei, eCl〉 = 1 if i ∈ Cl and 0 otherwise. Therefore, in this ”ideal” situation,
the points a1, . . . , an ∈ Rk are all on one of the k axes of Rk (in its canonical
basis). In particular, Lloyd’s algorithm will have no trouble clustering the
points a1, . . . , ak. In the more realistic setting where only ”approximate”
connected components exist, one can show that the points ai corresponding
to the ”approximate” lth connected component will stay close to the lth axis
of Rk. Therefore, Lloyd’s algorithm will still be able to identify the clusters.

Algorithm 4: Spectral clustering

1 Input: weighted graph G with weight matrix W ; number of clusters
k;

2 compute the Laplace matrix L;
3 compute the eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn and the associated

eigenvectors u1, . . . , un.
4 for i = 1, · · · , n do
5 let ai = (〈u1, ei〉, . . . , 〈uk, ei〉) ∈ Rk;
6 end
7 apply Lloyd’s algorithm to a1, . . . , an ∈ Rk;

Appendix - the Laplace matrix and the heat

equation

The reader familiar with calculus may have already heard about the Lapla-
cian in another context. If f is a twice differentiable function from Rd to R,
the Laplacian of f is defined by

∆f = −
d∑
j=1

∂2f

∂x2
j

, (6.8)

(note the sign convention that we use here). How is this operator related to
the Laplacian on the graph that we have defined in this chapter? In 1822,
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Figure 6.8: Top: the eigenvector of L corresponding to the eigenvalue 0. Bot-
tom: the eigenvector of L corresponding to the smallest positive eigenvalue,
equal to ' 10−3.
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Joseph Fourier published his treatise Théorie analytique de la chaleur, where
he considered the following problem. Consider a metal rod (that we identify
with [0, 1]) whose temperature at both extremities is fixed at 1 throughout
the whole experiment. Assume that at time t = 0 a certain distribution of
heat f0 is given in the rod (mathematically, a function f0 ≥ 0 with

∫
f0 =

1). How will the distribution of heat evolve through time? Our intuition
dictates that as time t progresses, the distribution of heat ft at time t will
become smoother, until the temperature is uniform in the rod at t = ∞,
corresponding to f∞ = 1. The equation governing the distribution of heat is
the heat equation

∂ft
∂t

+ ∆ft = 0. (6.9)

Solving this equation indeed shows that the distribution of heat ft will con-
verge exponentially fast to a uniform temperature. A microscopic vision of
the heat diffusion process consists in picturing a large number of small par-
ticles randomly moving in the rod. At each time t, the particle will with
probability 1/2 infinitesimally moves to the left, or to the right. The initial
distribution f0 represents exactly the original distribution of those particles
in the rod (if the heat is originally high at a point x in the rod, then f0 is
high, meaning that there are originally a lot of particles oscillating around x).
For a very small value of t, we can approximate the time derivative ∂ft/∂t
by (ft − f0)/t. The heat equation (6.9) then becomes

ft ' f0 − t∆f0 = (Id− t∆)f0.

This means that the distribution of heat at a small time t is approximately
given by the operator (Id− t∆).

Let us now go back to the discrete world. Consider the graph Gn with n
vertices, and weights

Wij =

{
1 if |i− j| = 1

0 otherwise.
(6.10)

The graph Gn is a ”line” graph, that is a discrete analogue of the metal rod.
If we start with a particle at position i, that moves at random, then after one
step, the probabilities of the position of i are given by the vector Qi (where
Q = D−1W is the probability transition matrix). Let us now consider a large
number of particles on the graph, distributed according to some distribution
u0 ∈ Rn (with nonnegative entries and such that

∑n
i=1(u0)i = 1). We make

all those particles take one random step on the graph. After this step, the
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distribution of the particles is given by Qu1 = (Idn − L)u0 (by definition
of the graph Laplacian). This is exactly the discrete time analogue of the
equation ft ' (Id− t∆)f0.

Therefore, the graph Laplacian and the Laplace operator from calculus
share the same physical meaning: they both represent how particles moving
at random behave on average on a small scale of time.
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