
Homework 9

Due April 17 at 11pm

Unless stated otherwise, justify any answers you give. You can work in
groups, but each student must write their own solution based on their own
understanding of the problem.

When uploading your homework to Gradescope you will have to select the
relevant pages for each question. Please submit each problem on a separate
page (i.e., 1a and 1b can be on the same page but 1 and 2 must be on
different pages). We understand that this may be cumbersome but this is
the best way for the grading team to grade your homework assignments and
provide feedback in a timely manner. Failure to adhere to these guidelines
may result in a loss of points. Note that it may take some time to select the
pages for your submission. Please plan accordingly. We suggest uploading
your assignment at least 30 minutes before the deadline so you will have
ample time to select the correct pages for your submission. If you are using
LATEX, consider using the minted or listings packages for typesetting code.

1. Show that the function (x, x′) ∈ R+ × R+ 7→ min(x, x′) is a kernel.
Hint: use that

min(x, x′) =

∫ ∞
0

1{s ≤ min(x, x′)}ds =

∫ ∞
0

1{s ≤ x}1{s ≤ x′}ds.

2. Find an example of a (semi-definite) kernel, but such that we do not
have k(x, x′) ≥ 0 for all x, x′. Find an example of a function k such
that k(x, x′) ≥ 0 for all x, x′, but k is not a (semi-definite) kernel.

3. (Sparse Gram matrix approximation) Let (x1,y1), . . . , (xn,yn) be a
training sample of n observations with xi ∈ X and yi ∈ R. Let k be a
kernel on X , let G be the Gram matrix associated with the observations
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and let Y = (y1, . . . ,yn)> ∈ Rn. Given a positive parameter λ, the
predictor given by kernel ridge regression is x 7→

∑n
i=1 âik(x,xi), where

â = (G + λnIdn)−1Y.

Computing â requires to store G (n2 entries) and to inverse a n × n
matrix (n3 complexity). To speed up the process, we are going to
consider a low-rank approximation of G.

(a) Let Φ : X → H be a feature map associated with k. Let 0 ≤
m ≤ n and let B be a n×m matrix. We approximate the vector
Φ(xi) ∈ H using only the m first vectors Φ(x1), . . . ,Φ(xm) by
defining Φ̃B(xi) =

∑m
j=1BijΦ(xj). Define the reconstruction error

Err(B) :=
∑n

i=1 ‖Φ̃B(xi)−Φ(xi)‖2H. Show that Err(B) is equal to

n∑
i=1

(
Gii − 2

m∑
j=1

BijGi,j +
∑

1≤j,j′≤m

BijBij′Gjj′

)
.

(b) Let Gnm be the n × m matrix obtained by taking the m first
columns of G. Also, let Gmm be them×mmatrix obtained by tak-
ing the first m rows and first columns of m. Assume that Gmm is
invertible. Show that Err(B) is minimized for B = Gnm(Gmm)−1.
Hint: compute the partial derivatives of Err(B) with respect to
each of the entries Bi0j0 for 1 ≤ i0 ≤ n and 1 ≤ j0 ≤ m. The
minimum is attained when the gradient is zero.

(c) Consider the feature map Φ̃B with B = Gnm(Gmm)−1. Show
that, for this feature map, the Gram matrix associated with the
observations (x1, . . . ,xn) is equal to

G̃ = Gnm(Gmm)−1(Gnm)>.

(d) Let U be a n × m matrix, V a m × m invertible matrix and W
be a m× n matrix. Assume that (Idn +UVW ) is invertible. The
Sherman-Woodbury-Morrison formula states that

(Idn + UVW )−1 = Idn − U(V −1 +WU)−1W.

You do not have to prove this formula. Assume that mul-
tiplying a m × n matrix by a n × p matrix requires O(mnp) op-
erations, and that inversing a m ×m matrix requires O(m3) op-
erations. Using those different elements, show that kernel ridge
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regression with feature map Φ̃B can be computed using O(nm2)
operations. What is the spatial complexity required to store G̃?
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