
Homework 8 - Solution

1. (a) Let s < 1/β. We have by Proposition 2.8 (characterization of
β-smoothness) that

f(xt − s∇f(xt)) ≤ f(xt)− 〈∇f(xt), s∇f(xt)〉+
β

2
‖s∇f(xt)‖2

= f(xt)− ‖∇f(xt)‖2
(
s− β

2
s2
)

= f(xt)− s‖∇f(xt)‖2
(

1− β

2
s

)
≤ f(xt)− s

2
‖∇f(xt)‖2 < f(xt)− λs‖∇f(xt)‖2

as λ < 1/2. Therefore, if s < 1/β, the backtracking line search
stops. After L loops, starting at s = 1, we have s = µL. So the
maximal number of iterations is L = max(1, log(β)/ log(1/µ)).

(b) If 1 < 1/β, we stop before making any iterations of the loop so
that the final value of s is 1. Assume now that 1 ≥ 1/β. Just
before the last iteration, we have s ≥ 1/β (otherwise we would
stop here). So, at the next iteration, when we stop, the value of
s is equal to µ times the previous value of s, which is therefore
larger than µ/β. Putting both cases together, the backtracking
line search terminates with a value s ≥ min(1, µ/β). Plugging this
information in the stopping condition gives

f(xt+1) ≤ f(xt)− λmin(1, µ/β)‖∇f(xt)‖2.

(c) According to the PL inequality, we have

‖∇f(xt)‖2 ≥ 2α(f(xt)− f(x?)).

1



Therefore,

f(xt+1)− f(x?) ≤ f(xt)− f(x?)− λmin(1, µ/β)2α(f(xt)− f(x?))

= (f(xt)− f(x?))(1− 2αλmin(1, µ/β)).

By iterating this equation, we obtain the result. Several remarks
are to be made. First, the rate of convergence of this algorithm is
still linear. However, the precise rate of convergence is slower than
for gradient descent with constant step size as 2αλmin(1, µ/β) ≤
α/β (where α/β was the constant appearing for the vanilla gradi-
ent descent). Still, backtracking line search has a huge advantage
over the constant step-size algorithm: it can be implemented with-
out knowing the parameter β of smoothness of f . Also, it is not
much more costly to implement than constant step size gradient
descent (only max(1, log(β)/ log(1/µ) computations are needed at
each iteration of the gradient descent).

2. (a) In the proof of Proposition 4.2, at iteration t, only the behavior of
f on the line [x?, xt] is of interest. Therefore, if the restriction of f
on this [x?, xt] is α-strongly convex, β-smooth and has a Hessian
that is γ-Lipschitz continuous, we can conclude as in the proof of
Proposition 4.2 (see Eq. (27)) that ‖xt+1 − x?‖ ≤ γ

2α
‖xt − x?‖2.

If ‖xt − x?‖2 ≤ 2α/γ, this implies that ‖xt+1 − x?‖ ≤ ‖xt − x?‖.
If ‖x0 − x?| ≤ 2α/γ and f satisfies those assumptions on the ball
B(x?, ‖x0 − x?‖), we can therefore prove by induction that the
restriction of f on the line [x?, xt] always satisfies the required
properties, allowing us to obtain the same convergence result.

(b) By symmetry, the minimizer x? is 0. Computations yield

f ′(x) = 1− 2

1 + e2x

f ′′(x) =
4e2x

(1 + e2x)2

Note that f ′′ ≥ 0 so that f is indeed convex. The function f ′′ is
even and decreasing on [0,+∞). Its minimal value is 0 whereas
its maximal value is 1. Therefore, it is 1-smooth (β = 1) and α-
strongly convex only for α = 0 (that is it is not strongly convex).

2



Figure 1: Initialization at x0 = 1.

(c) Consider the initialization x0 = 1. According to question 2., the
restriction of f on [−1, 1] is α-strongly convex with α = f ′′(1).
We have

2α

γ
=

3
√

3 · 4e2

2(1 + e2)2
≈ 1.092 > 1 = ‖x0 − x?‖.

Therefore, according to question 1., Newton’s method should con-
verge. We observe indeed a very fast convergence in Figure 1.

(d) We have, with α = f ′′(1.1),

2α

γ
=

3
√

3 · 4e2.2

2(1 + e2.2)2
≈ 0.933 < 1.1 = ‖x0 − x?‖.

Therefore, question 1. does not imply that Newton’s method
should converge (it does not also imply that is should diverge).
We observe that Newton’s method quickly diverges in Figure 2.
This showcases the fact that Newton’s method only converges on
a small neighborhood of the minimum: initialization has to be
chosen carefully!

3



Figure 2: Initialization at x0 = 1.1.

3. (a) We have (recalling that fj(xi) ∈ {−1,+1})

Rn(F̂t−1+αfj) =
1

n

n∑
i=1

exp(−yi(F̂t−1(xi) + αfj(xi))

=
n∑
i=1

w
(t)
i exp(−αyifj(xi))

=
n∑
i=1

w
(t)
i (e−α1{yi = fj(xi)}+ eα1{yi 6= fj(xi)})

= e−α
n∑
i=1

w
(t)
i (1− 1{yi 6= fj(xi)}+ e2α1{yi 6= fj(xi)})

= e−α
n∑
i=1

w
(t)
i (1 + (e2α − 1)1{yi 6= fj(xi)})

= e−α
n∑
i=1

w
(t)
i (1 + (e2α − 1)εt(j))

Let us fix j. Then, this function is a strictly convex function in

4



α, whose derivative is given by

e−α
n∑
i=1

w
(t)
i

(
−(1 + (e2α − 1)εt(j)) + 2e2αεt(j)

)
= e−α

n∑
i=1

w
(t)
i

(
−1 + εt(j) + e2αεt(j)

)
= e−α

n∑
i=1

w
(t)
i

(
εt(j)(1 + e2α)− 1

)
.

Therefore, the minimum of α 7→ Rn(F̂t−1+αfj) is attained at αj =
1
2

log
(

1−εt(j)
εt(j)

)
. The optimal value of j is the one that minimizes

Rn(F̂t−1 + αjfj)

= e−αj

n∑
i=1

w
(t)
i (1 + (e2αj − 1)εt(j))

=

√
εt(j)

1− εt(j)

n∑
i=1

w
(t)
i

(
1 +

(
1− εt(j)
εt(j)

− 1

)
εt(j)

)

=

√
εt(j)

1− εt(j)

n∑
i=1

w
(t)
i (2− 2εt(j))

= 2
n∑
i=1

w
(t)
i

√
εt(j)(1− εt(j)).

As each εt(j) is smaller than 1/2, the minimum is attained for the
smallest εt(j), that we call Et.

(b) The complexity of computing T steps is O(Tm).

(c) Note that
∑n

i=1w
(t)
i = Rn(F̂t−1) by definition. Therefore, accord-

ing to the previous question,

Rn(F̂t) = 2Rn(F̂t−1)
√
Et(1− Et).

We conclude by iterating this equation, and by noting thatRn(F̂0) =
1 as F̂0 = 0.

5



(d) As the function x 7→ 4x(1− x) is increasing on [0, 1/2], we have

4Et(1− Et) ≤ 4(1/2− γ)(1/2 + γ) = 4(1/4− γ2)
= 1− 4γ2 ≤ exp(−4γ2),

where we use the inequality 1− t ≤ exp(−t). This inequality and
the previous question allow us to conclude.

(e) It holds that

E[R̃P (Ĝ)] = E[R̃n(Ĝ)] + E[R̃P (Ĝ)− R̃n(Ĝ)]

≤ E[R̃n(Ĝ)] + E[sup
G∈G

(R̃P (G)− R̃n(G))].

The first quantity is smaller than exp(−2Tγ2) according to the
previous question, whereas the second quantity is bounded by the
second term in the inequality appearing in the question according
to Theorem 3.7 in Chapter 1.

(f) We plot in Figure 3 both the empirical risk for the 0 − 1 loss on
the training sample and on the testing sample. For T = 1, we
are using the best stump classifier, that is as expected not very
accurate (20% of errors) on both the training set and the testing
set. This makes sense because this classifier is too simple: the
approximation error is large. When T gets larger, as expected, the
empirical risk decreases very quickly to 0. This is a consequence of
question (d). What is surprising is that, even for T very large, we
do not see the testing error increases. Our current understanding
of the problem would indicate that, for T very large, we should be
overfitting and the testing error should get larger (this is reflected
by the second term in question (e) getting larger with T ). This is
not reflected in this experiment.

It turns out that a more thorough study of those predictors can
explain why overfitting does not happen when using the AdaBoost
algorithm in some experiments. The student interested by the the-
ory can check the book ”Boosting - Foundations and Algorithms”
by Schapire and Freud (Chapter 5).

6



Figure 3: Training and testing error on the spam set for different number of
iterations of the AdaBoost algorithm.

7


