
Homework 8

Due April 10 at 11pm

Unless stated otherwise, justify any answers you give. You can work in
groups, but each student must write their own solution based on their own
understanding of the problem.

When uploading your homework to Gradescope you will have to select the
relevant pages for each question. Please submit each problem on a separate
page (i.e., 1a and 1b can be on the same page but 1 and 2 must be on
different pages). We understand that this may be cumbersome but this is
the best way for the grading team to grade your homework assignments and
provide feedback in a timely manner. Failure to adhere to these guidelines
may result in a loss of points. Note that it may take some time to select the
pages for your submission. Please plan accordingly. We suggest uploading
your assignment at least 30 minutes before the deadline so you will have
ample time to select the correct pages for your submission. If you are using
LATEX, consider using the minted or listings packages for typesetting code.

1. Let f : Rd → R be an α-strongly convex and β-smooth function. In
class, we studied gradient descent with constant step-size s, where s has
to be chosen smaller than 1/β. We here study an alternative method to
find a step size s in the gradient descent algorithm called backtracking
line search. Given an iterate xt of the gradient descent, the next
iterate is defined by

xt+1 = xt − s∇f(xt). (1)

where s is chosen in the following iterative way. Fix two parameters
0 < λ < 1/2 and 0 < µ < 1 and consider the following iterative scheme.

Step 1. Start with s = 1.
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Step 2. While f(xt − s∇f(xt)) > f(xt) − λs‖∇f(xt)‖2, let s := µs and
reiterate.

(a) Assume that f is β-smooth. Show that if s < 1/β, then the
backtracking line search stops. What is then the maximal number
of iterations of the search?

(b) Show that if µ ≤ β, then the search stops at a value s ≥ µ/β.
Conclude that

f(xt+1) ≤ f(xt)− λmin(1, µ/β)‖∇f(xt)‖2.

(c) Use the previous question and argue as in the proof of Proposi-
tion 3.2 to conclude that after T steps of gradient descent with
backtracking line search, we have

f(xT )− f(x?) ≤ (1− 2αλmin(1, µ/β))T (f(x0)− f(x?)).

Compare this rate of convergence to the rate obtained in Proposi-
tion 3.2. Is it better? Is it worse? What is an advantage of back-
tracking line search compared to the method proposed in Propo-
sition 3.2 (constant step size)?

2. Consider f : Rd → R be a function in Rd that is twice differentiable in
some point x0 and has a unique minimizer x?.

(a) Argue that Newton’s method will converge quadratically in the fol-
lowing setting: assume that the restriction of f on B(x?, ‖x0−x?‖)
(the ball centered at x? with x0 on its boundary) is α-strongly con-
vex, β-smooth and has a Hessian that is γ-Lipschitz continuous,
and assume also that ‖x0−x?‖ ≤ 2α/γ. Hint: in Proposition 4.2,
we proved this result when f satisfies these conditions on Rd, but
do we really need those to hold on all of Rd? You do not have to
rewrite the proof of Proposition 4.2, only explain why the proof
still holds with the weaker assumptions.

(b) Consider f : x ∈ R 7→ log(ex + e−x). What is the minimizer x?

of f? Find the minimal α such that α is α-strongly convex. Find
the maximal β such that f is β-smooth.
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(c) Consider the initialization x0 = 1. According to question 1.,
should Newton’s method converge with this initialization? Plot
f and f ′ through the 5 first iterations of the method. Hint: the
second derivative f ′′ is 4/(3

√
3)-Lipschitz continuous (you do not

have to prove this).

(d) Same question with initialization x0 = 1.1.

3. In this exercise, we give some properties of the AdaBoost method. The
AdaBoost method consists in aggregating some ”weak” classifiers to
create a stronger one. Let X be a set of inputs and Y = {−1,+1} the
set of outputs. We consider the exponential loss `exp(y, y′) = exp(−yy′).
Let (x1,y1), . . . , (xn,yn) be a set of n i.i.d. observations of distribu-
tion P . Let F = {f1, . . . , fm} be a set of T (possibly not very good)
classifiers with values in {−1,+1}. The AdaBoost aims at finding a
good classifier in the set

Span(F) = {F =
m∑
j=1

αjfj : αj ∈ R}.

To do so, we perform a greedy minimization of the associated empirical
risk

Rn(F ) =
1

n

n∑
i=1

exp(−yiF (xi)).

More precisely, we compute a sequence of classifiers F̂t for t = 1, . . . , T
with initialization F̂0 = 0. Given F̂t−1, we consider

min
j=1,...,p
α∈R

Rn(F̂t−1 + αfj),

If αt and jt attain this minimum, we let F̂t = F̂t−1 + αtfjt . The final

classifier is defined as Ĝ(x) = sgn(F̂T (x)).

(a) Let w
(t)
i = n−1 exp(−yiF̂t−1(xi)) and define for j = 1, . . . ,m, the

weighted empirical error of fj at time t as

εt(j) =

∑n
i=1w

(t)
i 1{fj(xi) 6= yi}∑n

i=1w
(t)
i

.

3



Prove that

Rn(F̂t−1 + αfj) = e−α
n∑
i=1

w
(t)
i (1 + (e2α − 1)εt(j)).

Assume that we always have εt(j) < 1/2 for every j. Show that
at a fixed j, the function α 7→ Rn(F̂t−1 +αfj) is minimized at α =
1
2

log
(

1−εt(j)
εt(j)

)
(Hint: compute the derivative). Conclude that the

function (α, j) 7→ Rn(F̂t−1 +αfj) is minimized at (αt, jt), where jt
is the index j minimizing εt(j). Let Et := minj=1,...,m εt(j). Show
that

αt =
1

2
log

(
1− Et
Et

)
.

(b) Show that Rn(F̂T ) =
∏T

t=1

√
4Et(1− Et).

If the set of ”weak” classifiers is reasonable, we can expect that the
minimal empirical error E(t) at time t is always smaller than 1/2 − γ
for some γ > 0 (that is we do strictly better than ”guessing at random”
that would yield an empirical error of 1/2 on average).

(c) Show that under this condition, Rn(F̂T ) ≤ exp(−2Tγ2). To put
it another way, the empirical risk of the AdaBoost predictor con-
verges exponentially fast to 0.

The following result is true: the VC-dimension of the set of classifiers
G = {sgn ◦ F : F ∈ Span(F)} is smaller than cT log(m) for some
absolute constant c. You do not have to prove this result.

(d) Let R̃P (G) be the P -risk of a classifier G for the 0−1 loss. Show
that under the previous conditions

E[R̃P (Ĝ)] ≤ exp(−2Tγ2) + 2

√
2cT log(m)

n
log

(
en

cT log(m)

)
.

(f) Let X = Rd. A class of ”weak” classifiers that is used in practice
is given by the class Fstump of so-called ”stumps” classifiers whose
boundary is given by a hyperplane of the form {x ∈ Rd : xk = c}
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for some index k ∈ {1, . . . , d} and constant c ∈ R. Use the
AdaBoostClassifier function from sklearn to implement Ad-
aBoost on the spambase.csv dataset on the class Fstump of clas-
sifiers (this is the default parameter in the AdaBoostClassifier

function). Plot the empirical risk for the 0−1 loss on the training
sample and on the testing sample as a function of the number of
iterations T . What do you observe for T = 1? For T large? What
is surprising?
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