Homework 7 - Solution

1. Proving that $\operatorname{VC}(\mathcal{F})=4$ rigorously was not needed here. There exists a set of 4 points that can be shattered by the set of rectangles (see Figure 1) so $\operatorname{VC}(\mathcal{F}) \geq 4$. Let us show that any set of 5 points cannot be shattered by \mathcal{F}, implying that we have $\operatorname{VC}(\mathcal{F})=4$. Let $x_{1}, \ldots, x_{5} \in \mathbb{R}^{2}$, and assume without loss of generality that $x_{1}^{(1)} \leq x_{2}^{(1)} \leq \cdots \leq x_{5}^{(1)}$. We also assume for the sake of simplicity that all the horizontal coordinates $x_{i}^{(1)}$ are distinct, as well as all the vertical coordinates $x_{i}^{(2)}$. Let $\phi(i)$ be the index of the i th smallest vertical coordinates among the $x_{i} \mathrm{~s}$, so that

$$
x_{\phi(1)}^{(2)}<x_{\phi(2)}^{(2)}<\cdots<x_{\phi(5)}^{(2)} .
$$

The function ϕ defines a permutation of $\{1, \ldots, 5\}$. One can check that there always exist three indices $i_{1}<i_{2}<i_{3}$ with $\phi\left(i_{1}\right)<\phi\left(i_{2}\right)<\phi\left(i_{3}\right)$ or $\phi\left(i_{3}\right)<\phi\left(i_{2}\right)<\phi\left(i_{1}\right)$. It is not possible to select only $x_{i_{1}}$ and $x_{i_{3}}$ with a rectangle (indeed such a rectangle will also contain $x_{i_{2}}$). Therefore, \mathcal{F} does not shatter the set of inputs.
2. (a) Any function $h \in \mathcal{H}$ is of the form $h(x)=\max _{i} f_{i}(x)$ for some function $f_{i} \in \mathcal{F}_{i}$. Therefore, we can define a surjection from $\mathcal{F}_{1} \times$ $\cdots \times \mathcal{F}_{k}$ to \mathcal{H}. Given inputs $x_{1}, \ldots, x_{n} \in \mathcal{X}$, this yields a surjection from $\mathcal{C}_{\mathcal{F}_{1}}\left(x_{1}, \ldots, x_{n}\right) \times \cdots \times \mathcal{C}_{\mathcal{F}_{k}}\left(x_{1}, \ldots, x_{n}\right)$ to $\mathcal{C}_{\mathcal{H}}\left(x_{1}, \ldots, x_{n}\right)$. This implies that

$$
\mathcal{N}_{\mathcal{H}}\left(x_{1}, \ldots, x_{n}\right) \leq \prod_{i=1}^{k} \mathcal{N}_{\mathcal{F}_{i}}\left(x_{1}, \ldots, x_{n}\right)
$$

and we conclude by taking applying the log function to both sides of this inequality.

Figure 1: Top: Example of a set of four points that can be shattered by axis-aligned rectangles. Bottom: A set of five points cannot be shattered. The middle red point cannot be separated from the two other red points.
(b) Let $n=C D k \log (k)$ for some constant C to be fixed. As long as $C>1 / \log (2)$, we have $n>2 D$. Therefore, we can apply Sauer's lemma to each of the sets \mathcal{F}_{i} (and use that the function $x \mapsto \log (e n / x)$ is increasing on $[0, n])$:

$$
\begin{aligned}
\log \left(\mathcal{N}_{\mathcal{F}_{i}}\left(x_{1}, \ldots, x_{n}\right)\right) & \leq \operatorname{VC}\left(\mathcal{F}_{i}\right) \log \left(\frac{e n}{\operatorname{VC}\left(\mathcal{F}_{i}\right)}\right) \\
& \leq D \log \left(\frac{e n}{D}\right) \leq D \log (C e k \log (k))
\end{aligned}
$$

Using the previous question, we obtain that

$$
\log \left(\mathcal{N}_{\mathcal{H}}\left(x_{1}, \ldots, x_{n}\right)\right) \leq k D \log (\operatorname{Cek} \log (k))
$$

By the definition of the VC dimension, if $\log \left(\mathcal{N}_{\mathcal{H}}\left(x_{1}, \ldots, x_{n}\right)\right)<$ $n \log (2)$ for every inputs x_{1}, \ldots, x_{n}, then $\operatorname{VC}(\mathcal{H})<n$. However, we have

$$
n \log (2)=C \log (2) D k \log (k)
$$

To conclude, we choose C such that

$$
C \log (2) \log (k)>\log (C e k \log (k))
$$

for every $k \geq 2$. One can check that $C=7$ is enough for instance. Therefore,

$$
\mathrm{VC}(\mathcal{H})<7 D k \log (k)
$$

3. (a) Define

$$
f_{0}(x)= \begin{cases}1 & \text { if } x^{(2)} \leq g_{0}\left(x^{(1)}\right) \tag{1}\\ -1 & \text { otherwise }\end{cases}
$$

The Bayes risk $\mathcal{R}_{P}\left(f_{0}\right)$ is equal to $P\left(f_{0}(\mathbf{x}) \neq \mathbf{y}\right)=0$ by definition of \mathbf{y}. As we have $\mathcal{R}_{P}(f) \geq 0$ for any function f, this implies both that $f_{P}^{\star}=f_{0}$ and that $\mathcal{R}_{P}\left(f_{P}^{\star}\right)=0$.
(b) The Bayes predictor f_{P}^{\star} belongs to \mathcal{F}. Also, for every observation $\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}\right)$, we have $f_{P}^{\star}\left(\mathbf{x}_{\mathbf{i}}\right)=\mathbf{y}_{\mathbf{i}}$ by definition. Therefore, $\mathcal{R}_{n}\left(f_{P}^{\star}\right)=0$ and f_{P}^{\star} is a minimizer of \mathcal{R}_{n}. However, there are many functions $f \in \mathcal{F}$ with $\mathcal{R}_{n}(f)=0$, so that there is no uniqueness of the empirical risk minimizer! The approximation $\operatorname{error}_{\inf }^{f \in \mathcal{F}} \mid \mathcal{R}_{P}(f)-$
$\mathcal{R}_{P}\left(f_{P}^{\star}\right)$ is equal to $0-0=0$. The main issue with this predictor is that, in practice, we will select one of the many functions f that satisfy $\mathcal{R}_{n}(f)=0$ as our predictor, and nothing tells us that this predictor is close from f_{P}^{\star}. The estimation error will likely be very large for this set \mathcal{F}.
(c) Let $x \in[l / L,(l+1) / L)$. We have

$$
\begin{aligned}
g_{0}(x)= & g_{0}\left(x_{l}\right)+g_{0}^{\prime}\left(x_{l}\right)\left(x-x_{l}\right)+\cdots+g_{0}^{(k-1)}\left(x_{l}\right) \frac{\left(x-x_{l}\right)^{k-1}}{(k-1)!} \\
& +\int_{x_{l}}^{x} \frac{g_{0}^{(k)}(t)}{(k-1)!}(x-t)^{k-1} \mathrm{~d} t \\
= & \tilde{g}_{0, l}(x)+\int_{x_{l}}^{x} \frac{g_{0}^{(k)}(t)}{(k-1)!}(x-t)^{k-1} \mathrm{~d} t .
\end{aligned}
$$

The function $\tilde{g}_{0, l}$ is a polynomial function of degree $k-1$. The remainder integral term is bounded by $\frac{R}{k!}\left|x-x_{l}\right|^{k} \leq \frac{R}{k!(2 L)^{k}}$. We can define a function \tilde{g}_{0} in $\mathcal{G}_{l, k}$ by letting $\tilde{g}_{0}(x)=\tilde{g}_{0, l}(x)$ if $x \in[l / L,(l+$ $1) / L)$. Consider the associated classifier \tilde{f}_{0}. The approximation error is bounded by

$$
\mathcal{R}_{P}\left(\tilde{f}_{0}\right)-\mathcal{R}_{P}\left(f_{P}^{\star}\right)=\mathcal{R}_{P}\left(\tilde{f}_{0}\right)
$$

Also,

$$
\begin{aligned}
\mathcal{R}_{P}\left(\tilde{f}_{0}\right)= & P\left(\tilde{f}_{0}(\mathbf{x}) \neq \mathbf{y}\right) \\
= & P\left(\tilde{g}_{0}\left(\mathbf{x}^{(\mathbf{1})}\right)<\mathbf{x}^{(\mathbf{2})} \text { and } g_{0}\left(\mathbf{x}^{(\mathbf{1})}\right) \geq \mathbf{x}^{(\mathbf{2})}\right) \\
& \quad+P\left(\tilde{g}_{0}\left(\mathbf{x}^{(\mathbf{1})}\right) \geq \mathbf{x}^{(\mathbf{2})} \text { and } g_{0}\left(\mathbf{x}^{(\mathbf{1})}\right)<\mathbf{x}^{(\mathbf{2})}\right) .
\end{aligned}
$$

This sum is equal to the probability that $\mathbf{x}^{(\mathbf{2})}$ is between $\tilde{g}_{0}\left(\mathbf{x}^{(\mathbf{1})}\right)$ and $g_{0}\left(\mathbf{x}^{(\mathbf{1})}\right)$. As \mathbf{x} is uniform in $[0,1]^{2}$, we have

$$
\begin{aligned}
\mathcal{R}_{P}\left(\tilde{f}_{0}\right) & =\mathbb{E}\left[\left|\tilde{g}_{0}\left(\mathbf{x}^{(\mathbf{1})}\right)-g_{0}\left(\mathbf{x}^{(\mathbf{1})}\right)\right|\right] \\
& \leq \frac{R}{k!(2 L)^{k}}
\end{aligned}
$$

This is our final bound on the approximation error.
(d) No proof required here. However, here is a geometrical proof for those interested.

Figure 2: The quadrant $C_{-1,1}(z)$ does not intersect the image of $V(T)$. This implies that we cannot obtain the classification $-1,+1$ with the inputs corresponding to T and z.

- The VC dimension of $\mathcal{F}_{1,1}$ is 1 : with a set of two inputs x_{1}, x_{2}, with for instance $x_{1}^{(2)} \leq x_{2}^{(2)}$, then we cannot assign x_{1} to -1 and x_{2} to +1 with a classifier in $\mathcal{F}_{1,1}$.
- The VC dimension of $\mathcal{F}_{1, k}$ is k. This can maybe best be seen geometrically. Let $T=\left(t_{1}, \ldots, t_{l}\right)$ be a set of l numbers between 0 and 1 . We consider the matrix $V[T]$ of size $l \times k$, with $V[T]_{i, j}=t_{i}^{j-1}$. If $a=\left(a_{0}, \ldots, a_{k-1}\right) \in \mathbb{R}^{k}$ then $V[T] a \in$ \mathbb{R}^{l} is equal to $\left(g\left(t_{1}\right), \ldots, g\left(t_{l}\right)\right)$, where $g(t)=\sum_{j=1}^{k} a_{j} t^{j-1} \in$ $\mathcal{G}_{1, k}$.
Let us understand what it means that $\mathcal{G}_{1, k}$ shatters a set of l inputs $\left(x_{1}, \ldots, x_{l}\right)$. Let $t_{i}=x_{i}^{(1)}$ and $z_{i}=x_{i}^{(2)}$. Consider the vector $z=\left(z_{1}, \ldots, z_{l}\right) \in \mathbb{R}^{l}$. To obtain the classification $y=\left(y_{1}, \ldots, y_{l}\right)$ associated with the classifier g (corresponding to a vector $a \in \mathbb{R}^{k}$), we have to consider the relative position of the vectors $u=V[T] a$ and z. The sign y_{i} will be +1 if $z_{i} \leq u_{i}$, and -1 otherwise. The vectors a leading to a classification y are exactly the vectors such that $u=V[T] a$ belongs to

$$
C_{y}(z)=\left\{u: u_{i} \geq z_{i} \text { if } y_{i}=+1 \text { and } u_{i}<z_{i} \text { otherwise }\right\} .
$$

Each of the set $C_{y}(z)$ is a "quadrant" centered at z. The set
$\mathcal{G}_{1, k}$ shatters $\left(x_{1}, \ldots, x_{l}\right)$ exactly if, for all 2^{l} possible configurations of signs $y=\left(y_{1}, \ldots, y_{l}\right)$, there exists $a \in \mathbb{R}^{l}$ with $V[T] a \in C_{y}(z)$. See also Figure 2.
If $l=k$, then we can find x_{1}, \ldots, x_{l} such that the matrix $V[T]$ is of $\operatorname{rank} k$. Then, the image set $\left\{V[T] a, a \in \mathbb{R}^{l}\right\}$ is equal to \mathbb{R}^{l}. In particular, we can find a vector a such that $V[T] a \in$ $C_{z}(y)$ for any choice of signs $y=\left(y_{1}, \ldots, y_{l}\right)$, implying that x_{1}, \ldots, x_{l} is shattered. Therefore, $\operatorname{VC}\left(\mathcal{G}_{1, k}\right) \geq k$.
If $l=k+1$, then, for any inputs x_{1}, \ldots, x_{l+1}, the rank of the matrix $V[T]$ is at most k. Therefore, the image set $\left\{V[T] a, a \in \mathbb{R}^{l}\right\}$ is a subspace of dimension at most k of \mathbb{R}^{k+1}. In particular, the image set does not intersect all quadrants $C_{y}(z)$.

- The restrictions of a function $g \in \mathcal{G}_{L, 0}$ to each interval $[l / L,(l+$ $1) / L)$ can be chosen independently. This implies that

$$
\mathrm{VC}\left(\mathcal{F}_{L, 1}\right)=L \mathrm{VC}\left(\mathcal{F}_{1,1}\right)=L
$$

- Likewise, $\operatorname{VC}\left(\mathcal{F}_{L, k}\right)=L k$.
(e) According to Theorem 3.7 in the lecture notes, the expected estimation error is bounded by

$$
2 \sqrt{\frac{2 L k}{n} \log \left(\frac{e n}{L k}\right)}
$$

(f) The expected excess of risk $\mathbb{E}\left[\mathcal{R}_{P}\left(\hat{\mathcal{F}}_{\mathcal{F}_{L, k}}\right)-\mathcal{R}_{P}\left(f_{P}^{\star}\right)\right]$ is bounded by the sum of the approximation error and of the expected estimation error, which is bounded by

$$
\frac{R}{k!(2 L)^{k}}+2 \sqrt{\frac{2 L k}{n} \log \left(\frac{e n}{L k}\right)} .
$$

Forgetting about the log factors, this is the sum of a quantity decreasing in L (of order L^{-k}) and of a quantity increasing in L (of order $\sqrt{L / n}$). The minimum of $L^{-k}+\sqrt{L / n}$ is attained for $L=n^{1 /(2 k+1)}$, and yields an expected excess of risk of order $n^{-k /(2 k+1)}$.

