Homework 7 - Solution

1. Proving that $VC(\mathcal{F}) = 4$ rigorously was not needed here. There exists a set of 4 points that can be shattered by the set of rectangles (see Figure 1) so $VC(\mathcal{F}) \geq 4$. Let us show that any set of 5 points cannot be shattered by \mathcal{F} , implying that we have $VC(\mathcal{F}) = 4$. Let $x_1, \ldots, x_5 \in \mathbb{R}^2$, and assume without loss of generality that $x_1^{(1)} \leq x_2^{(1)} \leq \cdots \leq x_5^{(1)}$. We also assume for the sake of simplicity that all the horizontal coordinates $x_i^{(1)}$ are distinct, as well as all the vertical coordinates $x_i^{(2)}$. Let $\phi(i)$ be the index of the *i*th smallest vertical coordinates among the x_i s, so that

$$x_{\phi(1)}^{(2)} < x_{\phi(2)}^{(2)} < \dots < x_{\phi(5)}^{(2)}.$$

The function ϕ defines a permutation of $\{1, \ldots, 5\}$. One can check that there always exist three indices $i_1 < i_2 < i_3$ with $\phi(i_1) < \phi(i_2) < \phi(i_3)$ or $\phi(i_3) < \phi(i_2) < \phi(i_1)$. It is not possible to select only x_{i_1} and x_{i_3} with a rectangle (indeed such a rectangle will also contain x_{i_2}). Therefore, \mathcal{F} does not shatter the set of inputs.

2. (a) Any function $h \in \mathcal{H}$ is of the form $h(x) = \max_i f_i(x)$ for some function $f_i \in \mathcal{F}_i$. Therefore, we can define a surjection from $\mathcal{F}_1 \times \cdots \times \mathcal{F}_k$ to \mathcal{H} . Given inputs $x_1, \ldots, x_n \in \mathcal{X}$, this yields a surjection from $\mathcal{C}_{\mathcal{F}_1}(x_1, \ldots, x_n) \times \cdots \times \mathcal{C}_{\mathcal{F}_k}(x_1, \ldots, x_n)$ to $\mathcal{C}_{\mathcal{H}}(x_1, \ldots, x_n)$. This implies that

$$\mathcal{N}_{\mathcal{H}}(x_1,\ldots,x_n) \leq \prod_{i=1}^k \mathcal{N}_{\mathcal{F}_i}(x_1,\ldots,x_n)$$

and we conclude by taking applying the log function to both sides of this inequality.

Figure 1: Top: Example of a set of four points that can be shattered by axis-aligned rectangles. Bottom: A set of five points cannot be shattered. The middle red point cannot be separated from the two other red points.

(b) Let $n = CDk \log(k)$ for some constant C to be fixed. As long as $C > 1/\log(2)$, we have n > 2D. Therefore, we can apply Sauer's lemma to each of the sets \mathcal{F}_i (and use that the function $x \mapsto \log(en/x)$ is increasing on [0, n]):

$$\log(\mathcal{N}_{\mathcal{F}_i}(x_1, \dots, x_n)) \leq \operatorname{VC}(\mathcal{F}_i) \log\left(\frac{en}{\operatorname{VC}(\mathcal{F}_i)}\right)$$
$$\leq D \log\left(\frac{en}{D}\right) \leq D \log(Cek \log(k)).$$

Using the previous question, we obtain that

$$\log(\mathcal{N}_{\mathcal{H}}(x_1,\ldots,x_n)) \le kD\log(Cek\log(k)).$$

By the definition of the VC dimension, if $\log(\mathcal{N}_{\mathcal{H}}(x_1, \ldots, x_n)) < n \log(2)$ for every inputs x_1, \ldots, x_n , then $VC(\mathcal{H}) < n$. However, we have

$$n\log(2) = C\log(2)Dk\log(k).$$

To conclude, we choose C such that

$$C \log(2) \log(k) > \log(Cek \log(k))$$

for every $k \ge 2$. One can check that C = 7 is enough for instance. Therefore,

$$\operatorname{VC}(\mathcal{H}) < 7Dk \log(k).$$

3. (a) Define

$$f_0(x) = \begin{cases} 1 & \text{if } x^{(2)} \le g_0(x^{(1)}) \\ -1 & \text{otherwise.} \end{cases}$$
(1)

The Bayes risk $\mathcal{R}_P(f_0)$ is equal to $P(f_0(\mathbf{x}) \neq \mathbf{y}) = 0$ by definition of \mathbf{y} . As we have $\mathcal{R}_P(f) \geq 0$ for any function f, this implies both that $f_P^{\star} = f_0$ and that $\mathcal{R}_P(f_P^{\star}) = 0$.

(b) The Bayes predictor f_P^* belongs to \mathcal{F} . Also, for every observation $(\mathbf{x_i}, \mathbf{y_i})$, we have $f_P^*(\mathbf{x_i}) = \mathbf{y_i}$ by definition. Therefore, $\mathcal{R}_n(f_P^*) = 0$ and f_P^* is a minimizer of \mathcal{R}_n . However, there are many functions $f \in \mathcal{F}$ with $\mathcal{R}_n(f) = 0$, so that there is no uniqueness of the empirical risk minimizer! The approximation error $\inf_{f \in \mathcal{F}} \mathcal{R}_P(f)$ -

 $\mathcal{R}_P(f_P^{\star})$ is equal to 0 - 0 = 0. The main issue with this predictor is that, in practice, we will select one of the many functions f that satisfy $\mathcal{R}_n(f) = 0$ as our predictor, and nothing tells us that this predictor is close from f_P^{\star} . The estimation error will likely be very large for this set \mathcal{F} .

(c) Let $x \in [l/L, (l+1)/L)$. We have

$$g_0(x) = g_0(x_l) + g'_0(x_l)(x - x_l) + \dots + g_0^{(k-1)}(x_l)\frac{(x - x_l)^{k-1}}{(k-1)!} + \int_{x_l}^x \frac{g_0^{(k)}(t)}{(k-1)!}(x - t)^{k-1} dt = \tilde{g}_{0,l}(x) + \int_{x_l}^x \frac{g_0^{(k)}(t)}{(k-1)!}(x - t)^{k-1} dt.$$

The function $\tilde{g}_{0,l}$ is a polynomial function of degree k-1. The remainder integral term is bounded by $\frac{R}{k!}|x-x_l|^k \leq \frac{R}{k!(2L)^k}$. We can define a function \tilde{g}_0 in $\mathcal{G}_{l,k}$ by letting $\tilde{g}_0(x) = \tilde{g}_{0,l}(x)$ if $x \in [l/L, (l+1)/L)$. Consider the associated classifier \tilde{f}_0 . The approximation error is bounded by

$$\mathcal{R}_P(\tilde{f}_0) - \mathcal{R}_P(f_P^\star) = \mathcal{R}_P(\tilde{f}_0).$$

Also,

$$\begin{aligned} \mathcal{R}_P(\tilde{f}_0) &= P(\tilde{f}_0(\mathbf{x}) \neq \mathbf{y}) \\ &= P(\tilde{g}_0(\mathbf{x^{(1)}}) < \mathbf{x^{(2)}} \text{ and } g_0(\mathbf{x^{(1)}}) \ge \mathbf{x^{(2)}}) \\ &+ P(\tilde{g}_0(\mathbf{x^{(1)}}) \ge \mathbf{x^{(2)}} \text{ and } g_0(\mathbf{x^{(1)}}) < \mathbf{x^{(2)}}). \end{aligned}$$

This sum is equal to the probability that $\mathbf{x}^{(2)}$ is between $\tilde{g}_0(\mathbf{x}^{(1)})$ and $g_0(\mathbf{x}^{(1)})$. As \mathbf{x} is uniform in $[0, 1]^2$, we have

$$\mathcal{R}_P(\tilde{f}_0) = \mathbb{E}[|\tilde{g}_0(\mathbf{x}^{(1)}) - g_0(\mathbf{x}^{(1)})|] \\ \leq \frac{R}{k!(2L)^k}.$$

This is our final bound on the approximation error.

(d) No proof required here. However, here is a geometrical proof for those interested.

Figure 2: The quadrant $C_{-1,1}(z)$ does not intersect the image of V(T). This implies that we cannot obtain the classification -1, +1 with the inputs corresponding to T and z.

- The VC dimension of $\mathcal{F}_{1,1}$ is 1: with a set of two inputs x_1, x_2 , with for instance $x_1^{(2)} \leq x_2^{(2)}$, then we cannot assign x_1 to -1and x_2 to +1 with a classifier in $\mathcal{F}_{1,1}$.
- The VC dimension of $\mathcal{F}_{1,k}$ is k. This can maybe best be seen geometrically. Let $T = (t_1, \ldots, t_l)$ be a set of l numbers between 0 and 1. We consider the matrix V[T] of size $l \times k$, with $V[T]_{i,j} = t_i^{j-1}$. If $a = (a_0, \ldots, a_{k-1}) \in \mathbb{R}^k$ then $V[T]a \in$ \mathbb{R}^l is equal to $(g(t_1), \ldots, g(t_l))$, where $g(t) = \sum_{j=1}^k a_j t^{j-1} \in$ $\mathcal{G}_{1,k}$.

Let us understand what it means that $\mathcal{G}_{1,k}$ shatters a set of l inputs (x_1, \ldots, x_l) . Let $t_i = x_i^{(1)}$ and $z_i = x_i^{(2)}$. Consider the vector $z = (z_1, \ldots, z_l) \in \mathbb{R}^l$. To obtain the classification $y = (y_1, \ldots, y_l)$ associated with the classifier g (corresponding to a vector $a \in \mathbb{R}^k$), we have to consider the relative position of the vectors u = V[T]a and z. The sign y_i will be +1 if $z_i \leq u_i$, and -1 otherwise. The vectors a leading to a classification y are exactly the vectors such that u = V[T]a belongs to

 $C_y(z) = \{u : u_i \ge z_i \text{ if } y_i = +1 \text{ and } u_i < z_i \text{ otherwise} \}.$

Each of the set $C_y(z)$ is a "quadrant" centered at z. The set

 $\mathcal{G}_{1,k}$ shatters (x_1, \ldots, x_l) exactly if, for all 2^l possible configurations of signs $y = (y_1, \ldots, y_l)$, there exists $a \in \mathbb{R}^l$ with $V[T]a \in C_y(z)$. See also Figure 2.

If l = k, then we can find x_1, \ldots, x_l such that the matrix V[T]is of rank k. Then, the image set $\{V[T]a, a \in \mathbb{R}^l\}$ is equal to \mathbb{R}^l . In particular, we can find a vector a such that $V[T]a \in C_z(y)$ for any choice of signs $y = (y_1, \ldots, y_l)$, implying that x_1, \ldots, x_l is shattered. Therefore, $VC(\mathcal{G}_{1,k}) \geq k$.

If l = k + 1, then, for any inputs x_1, \ldots, x_{l+1} , the rank of the matrix V[T] is at most k. Therefore, the image set $\{V[T]a, a \in \mathbb{R}^l\}$ is a subspace of dimension at most k of \mathbb{R}^{k+1} . In particular, the image set does not intersect all quadrants $C_y(z)$.

• The restrictions of a function $g \in \mathcal{G}_{L,0}$ to each interval [l/L, (l+1)/L) can be chosen independently. This implies that

$$\operatorname{VC}(\mathcal{F}_{L,1}) = L\operatorname{VC}(\mathcal{F}_{1,1}) = L.$$

- Likewise, $VC(\mathcal{F}_{L,k}) = Lk$.
- (e) According to Theorem 3.7 in the lecture notes, the expected estimation error is bounded by

$$2\sqrt{\frac{2Lk}{n}\log\left(\frac{en}{Lk}\right)}.$$

(f) The expected excess of risk $\mathbb{E}[\mathcal{R}_P(\hat{f}_{\mathcal{F}_{L,k}}) - \mathcal{R}_P(f_P^{\star})]$ is bounded by the sum of the approximation error and of the expected estimation error, which is bounded by

$$\frac{R}{k!(2L)^k} + 2\sqrt{\frac{2Lk}{n}\log\left(\frac{en}{Lk}\right)}$$

Forgetting about the log factors, this is the sum of a quantity decreasing in L (of order L^{-k}) and of a quantity increasing in L (of order $\sqrt{L/n}$). The minimum of $L^{-k} + \sqrt{L/n}$ is attained for $L = n^{1/(2k+1)}$, and yields an expected excess of risk of order $n^{-k/(2k+1)}$.