
Homework 7 - Solution

1. Proving that VC(F) = 4 rigorously was not needed here. There
exists a set of 4 points that can be shattered by the set of rectangles (see
Figure 1) so VC(F) ≥ 4. Let us show that any set of 5 points cannot be
shattered by F , implying that we have VC(F) = 4. Let x1, . . . , x5 ∈ R2,

and assume without loss of generality that x
(1)
1 ≤ x

(1)
2 ≤ · · · ≤ x

(1)
5 . We

also assume for the sake of simplicity that all the horizontal coordinates
x
(1)
i are distinct, as well as all the vertical coordinates x

(2)
i . Let φ(i)

be the index of the ith smallest vertical coordinates among the xis, so
that

x
(2)
φ(1) < x

(2)
φ(2) < · · · < x

(2)
φ(5).

The function φ defines a permutation of {1, . . . , 5}. One can check that
there always exist three indices i1 < i2 < i3 with φ(i1) < φ(i2) < φ(i3)
or φ(i3) < φ(i2) < φ(i1). It is not possible to select only xi1 and xi3 with
a rectangle (indeed such a rectangle will also contain xi2). Therefore,
F does not shatter the set of inputs.

2. (a) Any function h ∈ H is of the form h(x) = maxi fi(x) for some
function fi ∈ Fi. Therefore, we can define a surjection from F1 ×
· · ·×Fk toH. Given inputs x1, . . . , xn ∈ X , this yields a surjection
from CF1(x1, . . . , xn)×· · ·×CFk

(x1, . . . , xn) to CH(x1, . . . , xn). This
implies that

NH(x1, . . . , xn) ≤
k∏
i=1

NFi
(x1, . . . , xn)

and we conclude by taking applying the log function to both sides
of this inequality.
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Figure 1: Top: Example of a set of four points that can be shattered by
axis-aligned rectangles. Bottom: A set of five points cannot be shattered.
The middle red point cannot be separated from the two other red points.
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(b) Let n = CDk log(k) for some constant C to be fixed. As long
as C > 1/ log(2), we have n > 2D. Therefore, we can apply
Sauer’s lemma to each of the sets Fi (and use that the function
x 7→ log(en/x) is increasing on [0, n]):

log(NFi
(x1, . . . , xn)) ≤ VC(Fi) log

(
en

VC(Fi)

)
≤ D log

(en
D

)
≤ D log(Cek log(k)).

Using the previous question, we obtain that

log(NH(x1, . . . , xn)) ≤ kD log(Cek log(k)).

By the definition of the VC dimension, if log(NH(x1, . . . , xn)) <
n log(2) for every inputs x1, . . . , xn, then VC(H) < n. However,
we have

n log(2) = C log(2)Dk log(k).

To conclude, we choose C such that

C log(2) log(k) > log(Cek log(k))

for every k ≥ 2. One can check that C = 7 is enough for instance.
Therefore,

VC(H) < 7Dk log(k).

3. (a) Define

f0(x) =

{
1 if x(2) ≤ g0(x

(1))

−1 otherwise.
(1)

The Bayes risk RP (f0) is equal to P (f0(x) 6= y) = 0 by definition
of y. As we have RP (f) ≥ 0 for any function f , this implies both
that f ?P = f0 and that RP (f ?P ) = 0.

(b) The Bayes predictor f ?P belongs to F . Also, for every observation
(xi,yi), we have f ?P (xi) = yi by definition. Therefore, Rn(f ?P ) = 0
and f ?P is a minimizer of Rn. However, there are many functions
f ∈ F with Rn(f) = 0, so that there is no uniqueness of the
empirical risk minimizer! The approximation error inff∈F RP (f)−
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RP (f ?P ) is equal to 0− 0 = 0. The main issue with this predictor
is that, in practice, we will select one of the many functions f that
satisfy Rn(f) = 0 as our predictor, and nothing tells us that this
predictor is close from f ?P . The estimation error will likely be very
large for this set F .

(c) Let x ∈ [l/L, (l + 1)/L). We have

g0(x) = g0(xl) + g′0(xl)(x− xl) + · · ·+ g
(k−1)
0 (xl)

(x− xl)k−1

(k − 1)!

+

∫ x

xl

g
(k)
0 (t)

(k − 1)!
(x− t)k−1dt

= g̃0,l(x) +

∫ x

xl

g
(k)
0 (t)

(k − 1)!
(x− t)k−1dt.

The function g̃0,l is a polynomial function of degree k − 1. The
remainder integral term is bounded by R

k!
|x−xl|k ≤ R

k!(2L)k
. We can

define a function g̃0 in Gl,k by letting g̃0(x) = g̃0,l(x) if x ∈ [l/L, (l+
1)/L). Consider the associated classifier f̃0. The approximation
error is bounded by

RP (f̃0)−RP (f ?P ) = RP (f̃0).

Also,

RP (f̃0) = P (f̃0(x) 6= y)

= P (g̃0(x
(1)) < x(2) and g0(x

(1)) ≥ x(2))

+ P (g̃0(x
(1)) ≥ x(2) and g0(x

(1)) < x(2)).

This sum is equal to the probability that x(2) is between g̃0(x
(1))

and g0(x
(1)). As x is uniform in [0, 1]2, we have

RP (f̃0) = E[|g̃0(x(1))− g0(x(1))|]

≤ R

k!(2L)k
.

This is our final bound on the approximation error.

(d) No proof required here. However, here is a geometrical
proof for those interested.
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Figure 2: The quadrant C−1,1(z) does not intersect the image of V (T ). This
implies that we cannot obtain the classification −1,+1 with the inputs cor-
responding to T and z.

• The VC dimension of F1,1 is 1: with a set of two inputs x1, x2,

with for instance x
(2)
1 ≤ x

(2)
2 , then we cannot assign x1 to −1

and x2 to +1 with a classifier in F1,1.

• The VC dimension of F1,k is k. This can maybe best be
seen geometrically. Let T = (t1, . . . , tl) be a set of l numbers
between 0 and 1. We consider the matrix V [T ] of size l × k,
with V [T ]i,j = tj−1i . If a = (a0, . . . , ak−1) ∈ Rk then V [T ]a ∈
Rl is equal to (g(t1), . . . , g(tl)), where g(t) =

∑k
j=1 ajt

j−1 ∈
G1,k.
Let us understand what it means that G1,k shatters a set of

l inputs (x1, . . . , xl). Let ti = x
(1)
i and zi = x

(2)
i . Consider

the vector z = (z1, . . . , zl) ∈ Rl. To obtain the classification
y = (y1, . . . , yl) associated with the classifier g (corresponding
to a vector a ∈ Rk), we have to consider the relative position of
the vectors u = V [T ]a and z. The sign yi will be +1 if zi ≤ ui,
and −1 otherwise. The vectors a leading to a classification y
are exactly the vectors such that u = V [T ]a belongs to

Cy(z) = {u : ui ≥ zi if yi = +1 and ui < zi otherwise}.

Each of the set Cy(z) is a ”quadrant” centered at z. The set
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G1,k shatters (x1, . . . , xl) exactly if, for all 2l possible config-
urations of signs y = (y1, . . . , yl), there exists a ∈ Rl with
V [T ]a ∈ Cy(z). See also Figure 2.
If l = k, then we can find x1, . . . , xl such that the matrix V [T ]
is of rank k. Then, the image set {V [T ]a, a ∈ Rl} is equal to
Rl. In particular, we can find a vector a such that V [T ]a ∈
Cz(y) for any choice of signs y = (y1, . . . , yl), implying that
x1, . . . , xl is shattered. Therefore, VC(G1,k) ≥ k.
If l = k + 1, then, for any inputs x1, . . . , xl+1, the rank
of the matrix V [T ] is at most k. Therefore, the image set
{V [T ]a, a ∈ Rl} is a subspace of dimension at most k of
Rk+1. In particular, the image set does not intersect all quad-
rants Cy(z).

• The restrictions of a function g ∈ GL,0 to each interval [l/L, (l+
1)/L) can be chosen independently. This implies that

VC(FL,1) = LVC(F1,1) = L.

• Likewise, VC(FL,k) = Lk.

(e) According to Theorem 3.7 in the lecture notes, the expected esti-
mation error is bounded by

2

√
2Lk

n
log
( en
Lk

)
.

(f) The expected excess of risk E[RP (f̂FL,k
)−RP (f ?P )] is bounded by

the sum of the approximation error and of the expected estimation
error, which is bounded by

R

k!(2L)k
+ 2

√
2Lk

n
log
( en
Lk

)
.

Forgetting about the log factors, this is the sum of a quantity
decreasing in L (of order L−k) and of a quantity increasing in
L (of order

√
L/n). The minimum of L−k +

√
L/n is attained

for L = n1/(2k+1), and yields an expected excess of risk of order
n−k/(2k+1).
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