1.

2.

HOMEWORK 7 - SOLUTION

Proving that VC(F) = 4 rigorously was not needed here. There
exists a set of 4 points that can be shattered by the set of rectangles (see
Figure 1) so VC(F) > 4. Let us show that any set of 5 points cannot be
shattered by F, implying that we have VC(F) = 4. Let x4, ..., 15 € R?,
and assume without loss of generality that xgl) < a:él) <. < xél). We
also assume for the sake of simplicity that all the horizontal coordinates
xgl) are distinct, as well as all the vertical coordinates :1:52). Let ¢(i)
be the index of the ith smallest vertical coordinates among the z;s, so
that ) , ,

o) < Totr o)

The function ¢ defines a permutation of {1,...,5}. One can check that
there always exist three indices i1 < iy < i3 with ¢(i1) < ¢(i2) < @(i3)
or ¢(iz) < P(iz) < ¢(iy). It is not possible to select only x;, and z;, with
a rectangle (indeed such a rectangle will also contain x;,). Therefore,
F does not shatter the set of inputs.

x <<

(a) Any function h € H is of the form h(z) = max; fi(z) for some
function f; € F;. Therefore, we can define a surjection from F; x
-« X Fr toH. Given inputs zq, ..., x, € X, this yields a surjection
from Cx, (21, ..., 2y) X - XCxr (21, ..., 2,) to Cy(xy,...,x,). This
implies that

k

Ny(xy, ... x,) < H./\/']:i(xl,...,xn)

=1

and we conclude by taking applying the log function to both sides
of this inequality.
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Figure 1: Top: Example of a set of four points that can be shattered by
axis-aligned rectangles. Bottom: A set of five points cannot be shattered.
The middle red point cannot be separated from the two other red points.



(b)

Let n = C'Dklog(k) for some constant C' to be fixed. As long
as C' > 1/log(2), we have n > 2D. Therefore, we can apply
Sauer’s lemma to each of the sets F; (and use that the function
x — log(en/x) is increasing on [0, n)):

log(NF, (1, ..., 2,)) < VC(F;)log (vg?fi))

en
< — ) < .
< Dlog (D) < Dlog(Ceklog(k))
Using the previous question, we obtain that
log(Ny (21, ..., 2,)) < kDlog(Ceklog(k)).

By the definition of the VC dimension, if log(Ny(z1,...,2,)) <
nlog(2) for every inputs x1,...,x,, then VC(H) < n. However,
we have

nlog(2) = C'log(2)Dklog(k).
To conclude, we choose C' such that
C'log(2) log(k) > log(Ceklog(k))

for every k > 2. One can check that C' = 7 is enough for instance.
Therefore,
VC(H) < 7TDklog(k).

Define

(1)

—1  otherwise.

fo(x) = {1 if 2 < go(2)

The Bayes risk Rp(fo) is equal to P(fo(x) # y) = 0 by definition
of y. As we have Rp(f) > 0 for any function f, this implies both
that fr = fo and that Rp(f}) =0.

The Bayes predictor f5 belongs to F. Also, for every observation
(xi,yi), we have f5(x;) = y; by definition. Therefore, R,,(f5) =0
and fp is a minimizer of R,,. However, there are many functions
f € F with R,(f) = 0, so that there is no uniqueness of the
empirical risk minimizer! The approximation error inf ;e r Rp(f)—
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Rp(fF) is equal to 0 — 0 = 0. The main issue with this predictor
is that, in practice, we will select one of the many functions f that
satisfy R, (f) = 0 as our predictor, and nothing tells us that this
predictor is close from f. The estimation error will likely be very
large for this set F.

Let x € [I/L,(l+1)/L). We have

(2 — xp)k1

(w) = ola) + ) — )4+ 0 o) S

" g ) 4
+/xl (i_<1)!(x—t)k dt

z (k)
i)+ [ B - ot

The function go; is a polynomial function of degree £ — 1. The

remainder integral term is bounded by #|z—z;|F < ﬁ. We can

define a function go in Gy 1, by letting go(z) = go, () ifz € [I/L, (I+
1)/L). Consider the associated classifier fy. The approximation
error is bounded by

Re(fo) — Re(f5) = Re(fo).
Also,

Re(fo) = P(fo(x) )
= P(5o(x™) < x@ and go(xV) > x?)
+ P(Go(xM) > x@ and go(x) < x@).
This sum is equal to the probability that x() is between §o(x™"))

and go(xV). As x is uniform in [0, 1]?, we have

Re(fo) = Ellgo(x™) — go(x™M)|]

<
= RQ2L)F

This is our final bound on the approximation error.

No proof required here. However, here is a geometrical
proof for those interested.
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Figure 2: The quadrant C_; (%) does not intersect the image of V(7"). This
implies that we cannot obtain the classification —1,+1 with the inputs cor-
responding to 7" and z.

e The VC dimension of F ; is 1: with a set of two inputs z1, s,
with for instance x?) < 3352), then we cannot assign z; to —1

and zo to +1 with a classifier in F ;.

e The VC dimension of Fjj is k. This can maybe best be
seen geometrically. Let T = (t1,...,t;) be a set of | numbers
between 0 and 1. We consider the matrix V[T of size [ x k,
with V[T),; = t)7". It a = (ag,...,a5_1) € R¥ then V[T]a €
R! is equal to (g(t1),...,g(t;)), where g(t) = Z;?:l a;t’~t €
Gk
Let us understand what it means that G, ; shatters a set of
[ inputs (zq,...,2;). Let t; = xz(l) and z; = %(2)' Consider

the vector z = (21,...,2) € Rl. To obtain the classification

y = (y1,...,y) associated with the classifier ¢ (corresponding

to a vector a € R¥), we have to consider the relative position of

the vectors u = V[T]a and z. The sign y; will be +1 if z; < w;,

and —1 otherwise. The vectors a leading to a classification y

are exactly the vectors such that uw = V[T]a belongs to

Cy(z) ={u: u; > 2z if y; = +1 and w; < z; otherwise}.

Each of the set Cy(2) is a "quadrant” centered at z. The set
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G 1. shatters (z1,...,x;) exactly if, for all 2! possible config-
urations of signs y = (y1,...,y), there exists a € R! with
V[T)a € Cy(z). See also Figure 2.

If | = k, then we can find z1, ..., x; such that the matrix V[T
is of rank k. Then, the image set {V[T]a, a € R'} is equal to
R!. In particular, we can find a vector a such that V[T]a €
C.(y) for any choice of signs y = (yi,...,y), implying that
T1,...,a; is shattered. Therefore, VC(Gy ) > k.

If ] = k+ 1, then, for any inputs xi,...,x;,1, the rank
of the matrix V[T] is at most k. Therefore, the image set
{V[T)a, a € R'} is a subspace of dimension at most k of
R¥*+1. In particular, the image set does not intersect all quad-
rants Cy(z).

e The restrictions of a function g € Gy, o to each interval [I/L, ({+
1)/L) can be chosen independently. This implies that

VC(Fp1) = LVC(Fi1) = L

o Likewise, VC(Fp ) = Lk.

(e) According to Theorem 3.7 in the lecture notes, the expected esti-
mation error is bounded by

\/2Lk: en

(f) The expected excess of risk E[Rp(fh’k) —Rp(fp)] is bounded by
the sum of the approximation error and of the expected estimation
error, which is bounded by

\/ 2Lk en
— log

Forgetting about the log factors, this is the sum of a quantity
decreasing in L (of order L=*) and of a quantity increasing in
L (of order y/L/n). The minimum of L=% + \/L/n is attained

for L = n'/®*D and yields an expected excess of risk of order
R/ (2k+1)




