Homework 12 - Solution

1. (a) The first equality on the P-risk holds becaue

$$\begin{split} \mathbb{E}_{P}[(\mathbf{y} - f(\mathbf{x}))^{2}] &= \mathbb{E}_{P}[(\langle \theta_{0}, \mathbf{x} \rangle - f(\mathbf{x}) - \varepsilon)]^{2} \\ &= \mathbb{E}_{P}[(\langle \theta_{0}, \mathbf{x} \rangle - f(\mathbf{x}))^{2}] + \mathbb{E}[\varepsilon^{2}] + 2\mathbb{E}_{P}[\varepsilon(\langle \theta_{0}, \mathbf{x} \rangle - f(\mathbf{x}))] \\ &= \mathbb{E}_{P}[(\langle \theta_{0}, \mathbf{x} \rangle - f(\mathbf{x}))^{2}] + \sigma^{2} + 2\mathbb{E}_{P}[\varepsilon]\mathbb{E}_{P}[(\langle \theta_{0}, \mathbf{x} \rangle - f(\mathbf{x}))] \\ &= \mathbb{E}_{P}[(\langle \theta_{0}, \mathbf{x} \rangle - f(\mathbf{x}))^{2}] + \sigma^{2}, \end{split}$$

where we use the independence of ε and \mathbf{x} .

To find the Bayes predictor, we have to find f that minimizes $\mathcal{R}_P(f)$. Introduce the function $g_x(z) = (\langle \theta_0, x \rangle - z)^2 + \lambda z^2$. One can write $\mathcal{R}_P(f)$ as

$$\mathbb{E}_P[g_{\mathbf{x}}(f(\mathbf{x}))] + \sigma^2.$$

To minimize this quantity, we choose f(x) as the minimizer of g_x for every x. One can check that this minimizer is equal to $\langle x, \theta_0/(1+\lambda) \rangle$.

(b) We have

$$\begin{aligned} \mathcal{R}_P^{\star} &= \mathcal{R}_P(f_P^{\star}) \\ &= \mathbb{E}_P[(\langle \theta_0, \mathbf{x} \rangle - \frac{\langle \theta_0, \mathbf{x} \rangle}{1+\lambda})^2] + \lambda \frac{\mathbb{E}_P[\langle \theta_0, \mathbf{x} \rangle^2]}{(1+\lambda)^2} + \sigma^2 \\ &= \mathbb{E}_P[\langle \theta_0, \mathbf{x} \rangle^2] \left(\left(1 - \frac{1}{1+\lambda} \right)^2 + \frac{\lambda}{(1+\lambda)^2} \right) + \sigma^2 \\ &= \mathbb{E}_P[\langle \theta_0, \mathbf{x} \rangle^2] \frac{\lambda^2 + \lambda}{(1+\lambda)^2} + \sigma^2 \\ &= \mathbb{E}_P[\langle \theta_0, \mathbf{x} \rangle^2] \frac{\lambda}{1+\lambda} + \sigma^2. \end{aligned}$$

To conclude, we compute

$$\begin{split} \mathbb{E}_{P}[\langle \theta_{0}, \mathbf{x} \rangle^{2}] &= \mathbb{E}_{P}[\theta_{0}^{\top} \mathbf{x} \mathbf{x}^{\top} \theta_{0}] \\ &= \theta_{0}^{\top} \mathbb{E}_{P}[\mathbf{x} \mathbf{x}^{\top}] \theta_{0} \\ &= \theta_{0}^{\top} \mathrm{Id}_{d} \theta_{0} = \|\theta_{0}\|^{2}. \end{split}$$

- (c) This directly follows from the equality $\mathbb{E}_{P}[\langle \theta, \mathbf{x} \rangle^{2}] = \|\theta\|^{2}$, that holds for every $\theta \in \mathbb{R}^{d}$. We apply this identity to θ and $\theta \theta_{0}$.
- 2. Let $(\mathbf{x_1}, \mathbf{y_1}), \ldots, (\mathbf{x_n}, \mathbf{y_n})$ be a sample of n i.i.d. observations from distribution P.
 - (a) The Hessian of the function is equal to $2(\lambda + 1) \text{Id}_d$. The function is therefore α -strongly convex for $\alpha = 2(\lambda + 1)$.
 - (b) One can also write $\mathcal{R}_P(f_\theta)$ as

$$\mathbb{E}_P[\langle \theta_0 - \theta, \mathbf{x} \rangle^2] + \lambda \|\theta\|^2 + \sigma^2.$$

The gradient $\nabla \mathcal{R}_P(f_\theta)$ is equal to

$$2\mathbb{E}[\mathbf{x}\langle\theta-\theta_0,\mathbf{x}\rangle]+2\lambda\theta.$$

One can write $\mathbf{y}_{\mathbf{i}} = \langle \theta_0, \mathbf{x}_{\mathbf{i}} \rangle + \varepsilon_i$. Therefore,

$$\mathbf{v}_{\mathbf{i}} = 2\mathbf{x}_{\mathbf{i}}(\langle \mathbf{x}_{\mathbf{i}}, \theta \rangle - \mathbf{y}_{\mathbf{i}}) + 2\lambda\theta$$
$$= 2\mathbf{x}_{\mathbf{i}}\langle \mathbf{x}_{\mathbf{i}}, \theta - \theta_0 \rangle - 2\mathbf{x}_{\mathbf{i}}\varepsilon_i + 2\lambda\theta.$$

As $\mathbb{E}[\varepsilon_i] = 0$ and ε_i is independent from $\mathbf{x_i}$, the expectation of this quantity is $\nabla \mathcal{R}_P(f_{\theta})$, that is $\mathbf{v_i}$ is an unbiased estimate of $\nabla \mathcal{R}_P(f_{\theta})$.

(c) It holds that (using the inequality $||a + b||^2 \le 2||a||^2 + 2||b||^2$)

$$\begin{split} \mathbb{E}[\|\mathbf{v}_{\mathbf{i}}\|^{2}] &\leq 8\mathbb{E}[\|\mathbf{x}_{\mathbf{i}}(\langle \mathbf{x}_{\mathbf{i}}, \theta \rangle - \mathbf{y}_{\mathbf{i}})\|^{2}] + 8\lambda^{2} \|\theta\|^{2} \\ &= 8\mathbb{E}[\|\mathbf{x}_{\mathbf{i}}\|^{2}(\langle \mathbf{x}_{\mathbf{i}}, \theta \rangle - \mathbf{y}_{\mathbf{i}})^{2}] + 8\lambda^{2} \|\theta\|^{2} \\ &\leq 8M^{2}\mathbb{E}[(\langle \mathbf{x}_{\mathbf{i}}, \theta \rangle - \mathbf{y}_{\mathbf{i}})^{2}] + 8\lambda^{2} \|\theta\|^{2} \\ &= 8M^{2}\mathbb{E}[(\langle \mathbf{x}_{\mathbf{i}}, \theta - \theta_{0} \rangle - \varepsilon_{i})^{2}] + 8\lambda^{2} \|\theta\|^{2} \\ &= 8M^{2}(\mathbb{E}[(\langle \mathbf{x}_{\mathbf{i}}, \theta - \theta_{0} \rangle)^{2}] + \mathbb{E}[\varepsilon_{i}^{2}]) + 8\lambda^{2} \|\theta\|^{2}, \end{split}$$

where we use the fact that ε_i is centered and independent from $\mathbf{x_i}$ at the last line. It holds that $\mathbb{E}[\varepsilon_i^2] = \sigma^2$ and that $\mathbb{E}[(\langle \mathbf{x_i}, \theta - \theta_0 \rangle)^2] = \|\theta - \theta_0\|^2 \leq 4R^2$ (because both θ and θ_0 are in B(0; R)). We obtain the final bound

$$\mathbb{E}[\|\mathbf{v_i}\|^2] \le 8M^2(4R^2 + \sigma^2) + 8\lambda^2 R^2$$

One can therefore apply stochastic gradient descent with projection on B(0; R) using the vectors $(\mathbf{v_i})$. Theorem 1.5 in the lecture notes can be applied with $\rho = 8M^2(4R^2 + \sigma^2) + 8\lambda^2R^2$ and $\alpha = 2(\lambda+1)$. According to this theorem, after *n* steps of stochastic gradient descent, the output $\hat{\theta}$ will satisfy

$$\mathcal{R}_P(f_\theta) - \mathcal{R}_P^* \le A \frac{\log n}{n}.$$

where A depends on the constants M, R and λ . The time complexity of this method is in O(dn): there are n steps, and computing a single $\mathbf{v_i}$ requires O(d) operations.