Homework 12 - Solution

1. (a) The first equality on the P-risk holds becaue

$$
\begin{aligned}
\mathbb{E}_{P} & {\left[(\mathbf{y}-f(\mathbf{x}))^{2}\right]=\mathbb{E}_{P}\left[\left(\left\langle\theta_{0}, \mathbf{x}\right\rangle-f(\mathbf{x})-\varepsilon\right)\right]^{2} } \\
& =\mathbb{E}_{P}\left[\left(\left\langle\theta_{0}, \mathbf{x}\right\rangle-f(\mathbf{x})\right)^{2}\right]+\mathbb{E}\left[\varepsilon^{2}\right]+2 \mathbb{E}_{P}\left[\varepsilon\left(\left\langle\theta_{0}, \mathbf{x}\right\rangle-f(\mathbf{x})\right)\right] \\
& =\mathbb{E}_{P}\left[\left(\left\langle\theta_{0}, \mathbf{x}\right\rangle-f(\mathbf{x})\right)^{2}\right]+\sigma^{2}+2 \mathbb{E}_{P}[\varepsilon] \mathbb{E}_{P}\left[\left(\left\langle\theta_{0}, \mathbf{x}\right\rangle-f(\mathbf{x})\right)\right] \\
& =\mathbb{E}_{P}\left[\left(\left\langle\theta_{0}, \mathbf{x}\right\rangle-f(\mathbf{x})\right)^{2}\right]+\sigma^{2},
\end{aligned}
$$

where we use the independence of ε and \mathbf{x}.
To find the Bayes predictor, we have to find f that minimizes $\mathcal{R}_{P}(f)$. Introduce the function $g_{x}(z)=\left(\left\langle\theta_{0}, x\right\rangle-z\right)^{2}+\lambda z^{2}$. One can write $\mathcal{R}_{P}(f)$ as

$$
\mathbb{E}_{P}\left[g_{\mathbf{x}}(f(\mathbf{x}))\right]+\sigma^{2} .
$$

To minimize this quantity, we choose $f(x)$ as the minimizer of g_{x} for every x. One can check that this minimizer is equal to $\left\langle x, \theta_{0} /(1+\lambda)\right\rangle$.
(b) We have

$$
\begin{aligned}
\mathcal{R}_{P}^{\star} & =\mathcal{R}_{P}\left(f_{P}^{\star}\right) \\
& =\mathbb{E}_{P}\left[\left(\left\langle\theta_{0}, \mathbf{x}\right\rangle-\frac{\left\langle\theta_{0}, \mathbf{x}\right\rangle}{1+\lambda}\right)^{2}\right]+\lambda \frac{\mathbb{E}_{P}\left[\left\langle\theta_{0}, \mathbf{x}\right\rangle^{2}\right]}{(1+\lambda)^{2}}+\sigma^{2} \\
& =\mathbb{E}_{P}\left[\left\langle\theta_{0}, \mathbf{x}\right\rangle^{2}\right]\left(\left(1-\frac{1}{1+\lambda}\right)^{2}+\frac{\lambda}{(1+\lambda)^{2}}\right)+\sigma^{2} \\
& =\mathbb{E}_{P}\left[\left\langle\theta_{0}, \mathbf{x}\right\rangle^{2}\right] \frac{\lambda^{2}+\lambda}{(1+\lambda)^{2}}+\sigma^{2} \\
& =\mathbb{E}_{P}\left[\left\langle\theta_{0}, \mathbf{x}\right\rangle^{2}\right] \frac{\lambda}{1+\lambda}+\sigma^{2} .
\end{aligned}
$$

To conclude, we compute

$$
\begin{aligned}
\mathbb{E}_{P}\left[\left\langle\theta_{0}, \mathbf{x}\right\rangle^{2}\right] & =\mathbb{E}_{P}\left[\theta_{0}^{\top} \mathbf{x} \mathbf{x}^{\top} \theta_{0}\right] \\
& =\theta_{0}^{\top} \mathbb{E}_{P}\left[\mathbf{x x}^{\top}\right] \theta_{0} \\
& =\theta_{0}^{\top} \operatorname{Id}_{d} \theta_{0}=\left\|\theta_{0}\right\|^{2} .
\end{aligned}
$$

(c) This directly follows from the equality $\mathbb{E}_{P}\left[\langle\theta, \mathbf{x}\rangle^{2}\right]=\|\theta\|^{2}$, that holds for every $\theta \in \mathbb{R}^{d}$. We apply this identity to θ and $\theta-\theta_{0}$.
2. Let $\left(\mathbf{x}_{\mathbf{1}}, \mathbf{y}_{\mathbf{1}}\right), \ldots,\left(\mathbf{x}_{\mathbf{n}}, \mathbf{y}_{\mathbf{n}}\right)$ be a sample of n i.i.d. observations from distribution P.
(a) The Hessian of the function is equal to $2(\lambda+1) \mathrm{Id}_{d}$. The function is therefore α-strongly convex for $\alpha=2(\lambda+1)$.
(b) One can also write $\mathcal{R}_{P}\left(f_{\theta}\right)$ as

$$
\mathbb{E}_{P}\left[\left\langle\theta_{0}-\theta, \mathbf{x}\right\rangle^{2}\right]+\lambda\|\theta\|^{2}+\sigma^{2}
$$

The gradient $\nabla \mathcal{R}_{P}\left(f_{\theta}\right)$ is equal to

$$
2 \mathbb{E}\left[\mathbf{x}\left\langle\theta-\theta_{0}, \mathbf{x}\right\rangle\right]+2 \lambda \theta
$$

One can write $\mathbf{y}_{\mathbf{i}}=\left\langle\theta_{0}, \mathbf{x}_{\mathbf{i}}\right\rangle+\varepsilon_{i}$. Therefore,

$$
\begin{aligned}
\mathbf{v}_{\mathbf{i}} & =2 \mathbf{x}_{\mathbf{i}}\left(\left\langle\mathbf{x}_{\mathbf{i}}, \theta\right\rangle-\mathbf{y}_{\mathbf{i}}\right)+2 \lambda \theta \\
& =2 \mathbf{x}_{\mathbf{i}}\left\langle\mathbf{x}_{\mathbf{i}}, \theta-\theta_{0}\right\rangle-2 \mathbf{x}_{\mathbf{i}} \varepsilon_{i}+2 \lambda \theta .
\end{aligned}
$$

As $\mathbb{E}\left[\varepsilon_{i}\right]=0$ and ε_{i} is independent from $\mathbf{x}_{\mathbf{i}}$, the expectation of this quantity is $\nabla \mathcal{R}_{P}\left(f_{\theta}\right)$, that is $\mathbf{v}_{\mathbf{i}}$ is an unbiased estimate of $\nabla \mathcal{R}_{P}\left(f_{\theta}\right)$.
(c) It holds that (using the inequality $\|a+b\|^{2} \leq 2\|a\|^{2}+2\|b\|^{2}$)

$$
\begin{aligned}
\mathbb{E}\left[\left\|\mathbf{v}_{\mathbf{i}}\right\|^{2}\right] & \leq 8 \mathbb{E}\left[\left\|\mathbf{x}_{\mathbf{i}}\left(\left\langle\mathbf{x}_{\mathbf{i}}, \theta\right\rangle-\mathbf{y}_{\mathbf{i}}\right)\right\|^{2}\right]+8 \lambda^{2}\|\theta\|^{2} \\
& =8 \mathbb{E}\left[\left\|\mathbf{x}_{\mathbf{i}}\right\|^{2}\left(\left\langle\mathbf{x}_{\mathbf{i}}, \theta\right\rangle-\mathbf{y}_{\mathbf{i}}\right)^{2}\right]+8 \lambda^{2}\|\theta\|^{2} \\
& \leq 8 M^{2} \mathbb{E}\left[\left(\left\langle\mathbf{x}_{\mathbf{i}}, \theta\right\rangle-\mathbf{y}_{\mathbf{i}}\right)^{2}\right]+8 \lambda^{2}\|\theta\|^{2} \\
& =8 M^{2} \mathbb{E}\left[\left(\left\langle\mathbf{x}_{\mathbf{i}}, \theta-\theta_{0}\right\rangle-\varepsilon_{i}\right)^{2}\right]+8 \lambda^{2}\|\theta\|^{2} \\
& =8 M^{2}\left(\mathbb{E}\left[\left(\left\langle\mathbf{x}_{\mathbf{i}}, \theta-\theta_{0}\right\rangle\right)^{2}\right]+\mathbb{E}\left[\varepsilon_{i}^{2}\right]\right)+8 \lambda^{2}\|\theta\|^{2},
\end{aligned}
$$

where we use the fact that ε_{i} is centered and independent from $\mathbf{x}_{\mathbf{i}}$ at the last line. It holds that $\mathbb{E}\left[\varepsilon_{i}^{2}\right]=\sigma^{2}$ and that $\mathbb{E}\left[\left(\left\langle\mathbf{x}_{\mathbf{i}}, \theta-\right.\right.\right.$ $\left.\left.\left.\theta_{0}\right\rangle\right)^{2}\right]=\left\|\theta-\theta_{0}\right\|^{2} \leq 4 R^{2}$ (because both θ and θ_{0} are in $B(0 ; R)$). We obtain the final bound

$$
\mathbb{E}\left[\left\|\mathbf{v}_{\mathbf{i}}\right\|^{2}\right] \leq 8 M^{2}\left(4 R^{2}+\sigma^{2}\right)+8 \lambda^{2} R^{2}
$$

One can therefore apply stochastic gradient descent with projection on $B(0 ; R)$ using the vectors $\left(\mathbf{v}_{\mathbf{i}}\right)$. Theorem 1.5 in the lecture notes can be applied with $\rho=8 M^{2}\left(4 R^{2}+\sigma^{2}\right)+8 \lambda^{2} R^{2}$ and $\alpha=2(\lambda+1)$. According to this theorem, after n steps of stochastic gradient descent, the output $\hat{\theta}$ will satisfy

$$
\mathcal{R}_{P}\left(f_{\theta}\right)-\mathcal{R}_{P}^{\star} \leq A \frac{\log n}{n}
$$

where A depends on the constants M, R and λ. The time complexity of this method is in $O(d n)$: there are n steps, and computing a single $\mathbf{v}_{\mathbf{i}}$ requires $O(d)$ operations.

