
Homework 12 - Solution

1. (a) The first equality on the P -risk holds becaue

EP [(y − f(x))2] = EP [(〈θ0,x〉 − f(x)− ε)]2

= EP [(〈θ0,x〉 − f(x))2] + E[ε2] + 2EP [ε(〈θ0,x〉 − f(x))]

= EP [(〈θ0,x〉 − f(x))2] + σ2 + 2EP [ε]EP [(〈θ0,x〉 − f(x))]

= EP [(〈θ0,x〉 − f(x))2] + σ2,

where we use the independence of ε and x.

To find the Bayes predictor, we have to find f that minimizes
RP (f). Introduce the function gx(z) = (〈θ0, x〉 − z)2 + λz2. One
can write RP (f) as

EP [gx(f(x))] + σ2.

To minimize this quantity, we choose f(x) as the minimizer of
gx for every x. One can check that this minimizer is equal to
〈x, θ0/(1 + λ)〉.

(b) We have

R?
P = RP (f ?P )

= EP [(〈θ0,x〉 −
〈θ0,x〉
1 + λ

)2] + λ
EP [〈θ0,x〉2]

(1 + λ)2
+ σ2

= EP [〈θ0,x〉2]

((
1− 1

1 + λ

)2

+
λ

(1 + λ)2

)
+ σ2

= EP [〈θ0,x〉2]
λ2 + λ

(1 + λ)2
+ σ2

= EP [〈θ0,x〉2]
λ

1 + λ
+ σ2.
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To conclude, we compute

EP [〈θ0,x〉2] = EP [θ>0 xx
>θ0]

= θ>0 EP [xx>]θ0

= θ>0 Iddθ0 = ‖θ0‖2.

(c) This directly follows from the equality EP [〈θ,x〉2] = ‖θ‖2, that
holds for every θ ∈ Rd. We apply this identity to θ and θ − θ0.

2. Let (x1,y1), . . . , (xn,yn) be a sample of n i.i.d. observations from dis-
tribution P .

(a) The Hessian of the function is equal to 2(λ+ 1)Idd. The function
is therefore α-strongly convex for α = 2(λ+ 1).

(b) One can also write RP (fθ) as

EP [〈θ0 − θ,x〉2] + λ‖θ‖2 + σ2.

The gradient ∇RP (fθ) is equal to

2E[x〈θ − θ0,x〉] + 2λθ.

One can write yi = 〈θ0,xi〉+ εi. Therefore,

vi = 2xi(〈xi, θ〉 − yi) + 2λθ

= 2xi〈xi, θ − θ0〉 − 2xiεi + 2λθ.

As E[εi] = 0 and εi is independent from xi, the expectation of
this quantity is ∇RP (fθ), that is vi is an unbiased estimate of
∇RP (fθ).

(c) It holds that (using the inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2)

E[‖vi‖2] ≤ 8E[‖xi(〈xi, θ〉 − yi)‖2] + 8λ2‖θ‖2

= 8E[‖xi‖2(〈xi, θ〉 − yi)
2] + 8λ2‖θ‖2

≤ 8M2E[(〈xi, θ〉 − yi)
2] + 8λ2‖θ‖2

= 8M2E[(〈xi, θ − θ0〉 − εi)2] + 8λ2‖θ‖2

= 8M2(E[(〈xi, θ − θ0〉)2] + E[ε2i ]) + 8λ2‖θ‖2,
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where we use the fact that εi is centered and independent from
xi at the last line. It holds that E[ε2i ] = σ2 and that E[(〈xi, θ −
θ0〉)2] = ‖θ − θ0‖2 ≤ 4R2 (because both θ and θ0 are in B(0;R)).
We obtain the final bound

E[‖vi‖2] ≤ 8M2(4R2 + σ2) + 8λ2R2

One can therefore apply stochastic gradient descent with projec-
tion on B(0;R) using the vectors (vi). Theorem 1.5 in the lec-
ture notes can be applied with ρ = 8M2(4R2 + σ2) + 8λ2R2 and
α = 2(λ+1). According to this theorem, after n steps of stochastic
gradient descent, the output θ̂ will satisfy

RP (fθ)−R?
P ≤ A

log n

n
.

where A depends on the constantsM , R and λ. The time complex-
ity of this method is in O(dn): there are n steps, and computing
a single vi requires O(d) operations.
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