
Homework 12

Due May 15 at 11pm

Unless stated otherwise, justify any answers you give. You can work in
groups, but each student must write their own solution based on their own
understanding of the problem.

When uploading your homework to Gradescope you will have to select the
relevant pages for each question. Please submit each problem on a separate
page (i.e., 1a and 1b can be on the same page but 1 and 2 must be on
different pages). We understand that this may be cumbersome but this is
the best way for the grading team to grade your homework assignments and
provide feedback in a timely manner. Failure to adhere to these guidelines
may result in a loss of points. Note that it may take some time to select the
pages for your submission. Please plan accordingly. We suggest uploading
your assignment at least 30 minutes before the deadline so you will have
ample time to select the correct pages for your submission. If you are using
LATEX, consider using the minted or listings packages for typesetting code.

This homework is a two-part problem on ridge regression. In
the first part, we study ridge regression in the framework of risk
minimization with an appropriate loss. The goal of the second part
is to assess the performance of stochastic gradient descent on this
problem.

1. We consider the regression setting

y = 〈θ0,x〉+ ε

where θ0 ∈ Rd with ‖θ0‖ ≤ R, x ∈ Rd and ε is a noise term independent
from x. We assume that E[xx>] = Idd (we then say that x is isotropic).
We also assume that the noise is centered E[ε] = 0 and that E[ε2] = σ2.
We call P the joint distribution of x and y.
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(a) Let λ > 0. We define the loss function `λ(y, y
′) = (y− y′)2 + λy′2.

The P -risk of a predictor f : Rd → R is by definition equal to

RP (f) = EP [`λ(y, f(x))] = EP [(y − f(x))2] + λEP [f(x)2].

Show that

RP (f) = EP [(〈θ0,x〉 − f(x))2] + λEP [f(x)2] + σ2.

Show that the Bayes predictor is given by f ?P (x) = 〈x, θ0
1+λ
〉. (Hint:

minimize the quantity z 7→ (〈θ0,x〉 − z)2 + λz2.)

(b) Show that the Bayes risk is equal to

R?
P = RP (f ?P ) =

λ‖θ0‖2

1 + λ
+ σ2.

(c) For θ ∈ Rd, we let fθ be the linear predictor x 7→ 〈θ, x〉. Show
that

RP (fθ) = ‖θ − θ0‖2 + λ‖θ‖2 + σ2.

2. Let (x1,y1), . . . , (xn,yn) be a sample of n i.i.d. observations from dis-
tribution P .

(a) Show that the function θ 7→ RP (fθ) is α-strongly convex for α =
2(λ+ 1).

(b) Show that vi = 2xi(〈xi, θ〉 − yi) + 2λθ is an unbiased estimate of
∇RP (fθ) (that is prove that E[vi] = ∇RP (fθ)).

(c) Assume that x is bounded: there exists M > 0 such that |x| ≤M
almost surely. Show that for every θ with ‖θ‖ ≤ R, it holds that

E[‖vi‖2] ≤ C1λ
2R2 + C2R

2 + C3σ
2

for some constants C1, C2, C3 that may depend on M . Show that
one can apply Theorem 5 in the lecture notes in this setting. How
small does the excess of risk get with stochastic gradient descent
(with projection step on B(0;R)) using the n samples? (You may
only give the order of convergence with respect to n, not the exact
constant appearing in the bound.) What is the time complexity
of this method (depending on d and n)?
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The last question is completely optional and will not get you
any additional points. It consists in comparing SGD with the
”traditional” way of computing ridge regression.

3. (Optional) We let Y = (y1, . . . ,yn) ∈ Rn and X be the n× d matrix
with rows given by x1, . . . ,xn. We recall that the ridge regression
estimator is given by

θ̂RR =

(
X>X

n
+ λIdd

)−1
X>Y

n
.

(a) Show that the excess of risk of fθ is equal to

RP (fθ)−R?
P = (1 + λ)‖θ − θ0

1 + λ
‖2.

(b) Using the law of large number, show that θ̂ converges to θ0/(1+λ).
(Hint: What is E[xiyi]? What is E[xixi

>]?)

(c) Show that the excess of risk of fθ̂RR
is of order at most 1/n (up to

constants depending on σ, R and M).

(d) What is the time complexity required to compute θ̂RR? If d� 1,
is it faster to compute θ̂RR or to apply SGD for n steps?
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