Homework 11 - Solution

1. (a) We have

$$\begin{split} \|y_l^t - \Phi(x_j)\|_{\mathcal{H}}^2 &= \|\frac{1}{n_l^{t-1}} \sum_{i \in I_l^{t-1}} \Phi(x_i) - \Phi(x_j)\|_{\mathcal{H}}^2 \\ &= \|\frac{1}{n_l^{t-1}} \sum_{i \in I_l^{t-1}} (\Phi(x_i) - \Phi(x_j))\|_{\mathcal{H}}^2 \\ &= \frac{1}{(n_l^{t-1})^2} \sum_{i,i' \in I_l^{t-1}} \langle \Phi(x_i) - \Phi(x_j), \Phi(x_{i'}) - \Phi(x_j) \rangle_{\mathcal{H}} \\ &= \frac{1}{(n_l^{t-1})^2} \sum_{i,i' \in I_l^{t-1}} (K(x_i, x_{i'}) + K(x_j, x_j) - K(x_i, x_j) - K(x_{i'}, x_j)) \end{split}$$

The last equality is obtained by expanding the dot product and using the property $\langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}} = K(x, x')$.

- (b) For t = 0, the clusters I_l^0 are defined by $I_l^0 = \{l\}$ by definition: we can compute them. By induction, assume that we can compute the clusters I_l^{t-1} . Let us show that we can compute the clusters I_l^t . Using the formula proven in the last question, we can compute the distance between each observation $\Phi(x_j)$ and y_l^t while only knowing the set I_l^{t-1} (that we have access to by induction). Therefore, we can know for each j what is the centroid y_l^t that is the closest to $\Phi(x_j)$. We then compute the sets I_l^t by computing the indexes j such that $\Phi(x_j)$ is the closest to y_l^t . This ends the induction step.
- 2. (a) If q = 0, then there are two connected components (equal to $\{1, \ldots, n\}$ and $\{n+1, \ldots, 2n\}$. As long as q > 0, there is a single connected component.

- (b) For q = 0, there is a single connected component. According to the lecture notes, this implies that 0 has multiplicity one as an eigenvalue. The vector $(1, \ldots, 1)$ is the corresponding eigenvector.
- (c) For q > 0, there are two connected components. Therefore, the eigenvalue 0 has multiplicity 2. An orthonormal basis of the associated eigenspace is given by $(1, \ldots, 1, 0, \ldots, 0)$ and $(0, \ldots, 0, 1, \ldots, 1)$ (each vector having *n* ones and *n* zeroes).
- (d) We need to show that $Lu = \lambda u$. The degree matrix of the graph is the matrix $1/((q+1)n) \operatorname{Id}_n$. Therefore, $L = \operatorname{Id}_n - W/((q+1)n)$. This implies that having $Lu = \lambda u$ is equivalent to having

$$Wu = n(q+1)(1-\lambda)u.$$

Let us show this equality. Let $e \in \mathbb{R}^n$ be the vector with all ones, so that u = (e, -e). We have

$$Wu = \begin{pmatrix} E_n & qE_n \\ qE_n & E_n \end{pmatrix} \begin{pmatrix} e \\ -e \end{pmatrix} = \begin{pmatrix} (1-q)E_ne \\ (q-1)E_ne \end{pmatrix} = n \begin{pmatrix} (1-q)e \\ (q-1)e \end{pmatrix}.$$
(1)

Also,

$$n(q+1)(1-\lambda)u = n \begin{pmatrix} (q+1)(1-\lambda)e\\ -(q+1)(1-\lambda)e \end{pmatrix}$$
(2)

One can check that for $\lambda = 2q/(q+1)$, it holds that $(q+1)(1-\lambda) = 1-q$ and $-(q+1)(1-\lambda) = q-1$. This concludes the proof.

(e) For $q \ll 1$, the eigenvalue 2q/(q+1) is very close to 0. Even if the eigenvalue 0 has a multiplicity 1 (there is a single connected component), the existence of this very small eigenvalue reflects the fact that there are two clusters in this graph: indeed, the similarity between two $i \leq n$ and j > n is small (equal to $q \ll 1$), whereas the similarity in a cluster is equal to 1.