
Homework 10

Due April 24 at 11pm

Unless stated otherwise, justify any answers you give. You can work in
groups, but each student must write their own solution based on their own
understanding of the problem.

When uploading your homework to Gradescope you will have to select the
relevant pages for each question. Please submit each problem on a separate
page (i.e., 1a and 1b can be on the same page but 1 and 2 must be on
different pages). We understand that this may be cumbersome but this is
the best way for the grading team to grade your homework assignments and
provide feedback in a timely manner. Failure to adhere to these guidelines
may result in a loss of points. Note that it may take some time to select the
pages for your submission. Please plan accordingly. We suggest uploading
your assignment at least 30 minutes before the deadline so you will have
ample time to select the correct pages for your submission. If you are using
LATEX, consider using the minted or listings packages for typesetting code.

1. (Equivalence of partition estimators and least square regression with
feature maps) Let A = {A1, . . . , AJ} be a partition of [0, 1]d. Consider
the feature map Φ : [0, 1]d → RJ defined by

Φ(x) = (1{x ∈ A1}, . . . ,1{x ∈ AJ}). (1)

To be more explicit, the vector Φ(x) contains 0 in all of its entries,
except in the entry j that satisfies x ∈ Aj, where it contains a 1. Let
(x1,y1), . . . , (xn,yn) be a training sample from distribution P . We
recall the definition of the partition estimator associated with A: let
Ij be the set of indexes such that xi ∈ Aj and let nj be the number of
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elements of Ij. For the sake of simplicity, we assume that nj > 0
for every j. The partition estimator is defined by

f̂A(x) =
1

nj

∑
i∈Ij

yi

for every x ∈ [0, 1]d such that x ∈ Aj. The goal of this problem is to
show that the partition estimator is equal to the least square regression
estimator obtained with the feature map Φ. Let X̃ be the n×K matrix
whose rows are given by the vectors Φ(xi).

(a) Show that X̃>X̃ is a K ×K diagonal matrix equal to
n1

n2

. . .

nJ

 .

(b) Recall from the previous chapter that the optimal vector â in least-
square regression is equal to â = (X̃>X̃)−1X̃>Y, where Y ∈ Rn

is the vector with entries yi. The associated predictor is then
given by f̂LS(x) = 〈â,Φ(x)〉. Show that f̂LS(x) = f̂A(x) for every
x ∈ [0, 1]d.

2. (Neighbors in high dimension) Assume that we have access to n obser-
vations x1, . . . ,xn that are uniformly sampled in the cube [0, 1]d. We
assume that the dimension d is ”large”.

(a) Sample n = 500 uniform observations in the cube [0, 1]d for d =
2, 10, 500 and 10, 000. Let x be another uniform observation in
[0, 1]d. Show the plot of the histogram of the distances ‖x− xi‖2
(for i = 1, . . . , n) for those different values of d. Compare the
standard deviation and the expectation for different values of d.
What do you observe?

(b) Argue thanks to the previous question that all the squared dis-
tances ‖x − xi‖2 are roughly equal in high dimension. Explain
why in high-dimension the notion of ”nearest-neighbor” becomes
irrelevant.
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