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Recall the risk minimization paradigm. Let P be a probability distribu-
tion on X × Y (where X is the set of inputs and Y is the set of outputs).
Given a loss function ` : Y×Y , we defined the P -risk of a predictor f : X ×Y
as the quantity RP (f) = EP [`(f(x),y)]. The Bayes predictor is defined as
the predictor f ?P minimizing the P -risk, withR?

P = RP (f ?P ). To approach the
Bayes predictor, we introduce a class of predictors F = {fθ : X → Y , θ ∈ Θ}
indexed by some convex subset Θ ⊂ Rd and consider the minimizer θ? of the
function θ ∈ Θ 7→ RP (fθ). Note that in practice, we do not have access
to the function RP (fθ) (as P is unknown), so that computing θ? is not an
option.

Previously, we proposed to approximate θ? by computing the minimum
of the empirical risk Rn on the class of predictors F . We here propose a
slightly different perspective to achieve this same goal. What if we tried to
apply the gradient descent algorithm to the function F : θ 7→ RP (fθ)? To
do so, we only need to have access to the gradient of F , which is given at
θ ∈ Θ by

∇F (θ) = EP [∇θ`(fθ(x),y)]. (1)

Of course, as we do not have access to P , we cannot compute this gradient.
However, an unbiased estimator of this gradient is given by ∇θ`(fθ(xi),yi),
where (xi,yi) is an observation with distribution P . Running gradient de-
scent with those approximations of the gradient is referred to as stochas-
tic gradient descent. We explore in this chapter the performance of this
method, and compare it with gradient descent applied to the empirical risk
Rn.
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1 Stochastic gradient descent

We consider the more general setting where the goal is to minimize a function
F : Θ ⊂ Rd → R. Stochastic gradient descent will iteratively compute a
sequence of (random) iterates θt, based on (random) approximations of the
gradients ∇F (θt). More precisely, we assume that for every t ≥ 0, we have
access to a random vector vt that satisfies E[vt|θt] = ∇F (θt).

Algorithm 1: Stochastic gradient descent

1 Initialization: list of step sizes (st)t=1,...,T−1, θ
1 ∈ Θ;

2 for t = 1, . . . , T − 1 do
3 draw vt such that E[vt|θt] = ∇F (θt);
4 let θt+1 = θt − stvt;

5 end

6 Output: θ = 1
T

=
∑T

t=1 θ
t;

This general framework might appear quite abstract, so let us give directly
the application we have in mind in this chapter. Let F (θ) = EP [`(fθ(x),y)],
so that ∇F (θ) = EP [∇θ`(fθ(x),y)]. Assume that we have access to a sample
of T i.i.d. samples (x1,y1), . . . , (xT−1,yT−1) from the distribution P . In this
case, we define vt = ∇θ`(fθt(xt),yt). As the vector θt only depends on the
observation (xj,yj) for j < t, vt is independent from θt, ensuring that

E[vt|θt] = EP [∇θt`(fθ(x),y)] = ∇F (θt). (2)

Example 1. Another set of examples where stochastic gradient descent can be
utilized is when we are looking for the minimum of a function F of the form
θ 7→ 1

n

∑n
i=1 Fi(θ), where the functions Fi : Θ → R are arbitrary functions.

There is nothing random in the definition of the function F . We may however
define a uniform random variable i on the set of indexes {1, . . . , n}, and
remark that one can express F as

F (θ) = E[Fi(θ)]. (3)

In this situation, one can obtain unbiased estimates of the gradients, by
letting i1, . . . , iT−1 be T i.i.d. uniform random indexes and then by defining
vt = ∇Fit(θ

t).
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We are now ready to state our first theorem: stochastic gradient descent
converges as long as the function F is convex, Lipschitz continuous, and that
the estimates vt of the gradients are bounded.

Theorem 2. Let B(0;R) be the open ball centered at 0 in Rd. Let F : Rd →
R be a convex differentiable function, with minimizer θ? ∈ B(0;R). Let
T ≥ 1 be an integer and assume that for every t = 1, . . . , T − 1, it holds that
E[‖vt‖2] ≤ ρ2 for some constant ρ > 0. Consider stochastic gradient descent

with constant step size s =
√

4R2

ρ2T
and initialization θ0 ∈ B(0;R). Then, the

output θ of stochastic gradient descent after T steps satisfies

E[F (θ)]− F (θ?) ≤ 2
Rρ√
T
. (4)

First proof of Theorem 2: without randomness. We first give a proof of The-
orem 2 in the case where we always have vt = ∇F (θt). Note that in this case,
the algorithm boils down to classical gradient descent, where we use the av-
erage of the iterates as our final output. To insist on the non-randomness of
the method, we write vt instead of vt. We can first apply Jensen’s inequality:
it holds that

F (θ) ≤ 1

T

T∑
t=1

F (θt). (5)

Also, by convexity of F , we have

F (θt)− F (θ?) ≤ 〈vt, θt − θ?〉 (6)

(remember that vt = ∇F (θt) by assumption in this simplified setting).
Putting those two equation together yields that

F (θ)− F (θ?) ≤ 1

T

T∑
t=1

〈vt, θt − θ?〉. (7)

To bound the sum in (7), we are going to make a telescopic sum appear. To
do so, we use the general identity

〈a, b〉 =
1

2
(‖a+ b‖2 − ‖a‖2 − ‖b‖2) (8)
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with a = θ? − θt, b = svt. This yields

〈vt, θt − θ?〉 = −1

s
〈svt, θ? − θt〉

= − 1

2s
(‖θ? − θt + svt‖2 − ‖θt − θ?‖2 − s2‖vt‖2)

= − 1

2s
(‖θt+1 − θ?‖2 − ‖θt − θ?‖2 − s2‖vt‖2)

=
1

2s
(‖θt − θ?‖2 − ‖θt+1 − θ?‖2) +

s

2
‖vt‖2. (9)

By summing over t, we obtain from (7) that

F (θ)− F (θ?) ≤ 1

2Ts
(‖θ0 − θ?‖2 − ‖θT − θ?‖2) +

s

2T

T∑
t=1

‖vt‖2. (10)

To conclude, we use that both θ0 and θ? belong to R, and that all the
gradients vt have a norm smaller than ρ:

F (θ)− F (θ?) ≤ (2R)2

2Ts
+
sρ2

2
. (11)

One obtains the conclusion by plugging in the value s =
√

4R2

ρ2T
.

Second proof of Theorem 2: general case. In the general case, we adopt the
same proof technique, but have to be careful when taking expectations. First,
note that as before, by Jensen inequality,

F (θ)− F (θ?) ≤ 1

T

T∑
t=1

〈∇F (θt), θt − θ?〉

=
1

T

T∑
t=1

〈E[vt|θt], θt − θ?〉

=
1

T

T∑
t=1

E[〈vt, θt − θ?〉|θt].

(12)
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Therefore, by using the law of total expectation,

E[F (θ)]− F (θ?) ≤ E

[
1

T

T∑
t=1

E[〈vt, θt − θ?〉|θt]

]

=
1

T

T∑
t=1

E[〈vt, θt − θ?〉]

= E

[
1

T

T∑
t=1

〈vt, θt − θ?〉

]
.

(13)

As before, it holds that

1

T

T∑
t=1

〈vt, θt − θ?〉 =
1

2Ts
(‖θ0 − θ?‖2 − ‖θT − θ?‖2) +

s

2T

T∑
t=1

‖vt‖2

≤ (2R)2

2Ts
+

s

2T

T∑
t=1

‖vt‖2.

(14)

By putting (13) and (14) together, we obtain that

E[F (θ)]− F (θ?) ≤ (2R)2

2Ts
+

s

2T

T∑
t=1

E[‖vt‖2]

≤ (2R)2

2Ts
+

s

2T

T∑
t=1

ρ2

≤ (2R)2

2Ts
+
sρ2

2
.

The conclusion is obtained as before by choosing s =
√

4R2

ρ2T
.

Remark 3. 1. The randomness in (4) comes from the randomness in the
estimates vt of the gradients. In particular, we want to insist on the
fact that the function F is not random here.

2. As a particular case of this theorem, we may consider the case where
vt = ∇F (θt) (exact gradients). This exactly corresponds to classical
gradient descent with the final output being equal to the average of the
iterates θt.
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3. In practice, it is common to discard the first iterates when computing
the average θ. This allows one to ”forget” about the initialization θ1

(that has no reason to be relevant).

Example 4 (Toy example). Consider the function F : R2 → R defined by
F (θ) = a1

2
θ21 + a2

2
θ22. If we have access to the gradients of F , then iterates

of the gradient descent will linearly converge to 0. If, on the opposites, we
do not have access to ∇F (θ), but to a corrupted version v = ∇F (θ) + u
where u is a bounded random variable, then we can implement stochastic
gradient descent. The iterates of the stochastic gradient descent are displayed
in Figure 1.

The rate of convergence in this theorem is of order 1/
√
T . Previously,

we showed that if F is β-smooth (that is the gradient of F is β-Lipschitz),
then we can have a rate of convergence of order 1/T . It is natural to wonder
if this faster rate also holds for stochastic gradient descent. It turns out
that assuming smoothness does not improve the 1/

√
T rate of convergence

here. However, assuming that the function is α-strongly convex is enough
to obtain this 1/T -rate of convergence. To do so, we use a variant of the
previous stochastic gradient algorithm where we use an additional projection
step to ensure that the different iterates θt do not blow up. For R > 0, we
let

projR(θ) =

{
θ if ‖θ‖ ≤ R

R θ
‖θ‖ otherwise,

(15)

see also Figure 2.

Algorithm 2: Stochastic gradient descent with projection step

1 Initialization: list of step sizes (st)t=1,...,T−1, θ
1 ∈ Θ, radius R > 0;

2 for t = 1, . . . , T − 1 do
3 draw vt such that E[vt|θt] = G(θt);
4 let θt+1 = projR(θt − stvt);

5 end

6 Output: θ = 1
T

=
∑T

t=1 θ
t;

Theorem 5. Let F : Rd → R be a α-strongly convex differentiable function,
with minimizer θ? ∈ B(0;R). Let T ≥ 1 be an integer and assume that for
every t = 1, . . . , T − 1, it holds that E[‖vt‖2] ≤ ρ2 for some constant ρ >
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Figure 1: Top: iterates of the gradient descent. Bottom: iterates of the
stochastic gradient descent (red), and average of the first iterates (green).
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Figure 2: The projR function.

0. Consider stochastic gradient descent with projection step, with step size
st = 1/(αt) and initialization θ1. Then, the output θ of stochastic gradient
descent after T steps satisfies

E[F (θ)]− F (θ?) ≤ ρ2

2αT
(1 + log(T )). (16)

Proof. For sake of simplicity, we prove the result in the case R =∞ (that is
without the projection step). Our starting point is once again the identity
(9), that states that

〈vt, θt − θ?〉 =
1

2st
(‖θt − θ?‖2 − ‖θt+1 − θ?‖2) +

st
2
‖vt‖2

=
αt

2
(‖θt − θ?‖2 − ‖θt+1 − θ?‖2) +

1

2αt
‖vt‖2.

(17)

8



We then use strong convexity, which implies that for every t ≥ 1,

F (θt)−F (θ?) ≤ 〈∇F (θt), θt − θ?〉 − α

2
‖θt − θ?‖2

= 〈E[vt|θt], θt − θ?〉 − α

2
‖θt − θ?‖2

= E
[
〈vt, θt − θ?〉 − α

2
‖θt − θ?‖2

∣∣∣θt]
= E

[α(t− 1)

2
‖θt − θ?‖2 − αt

2
‖θt+1 − θ?‖2 +

1

2αt
‖vt‖2

∣∣∣θt].
(18)

The next steps are now similar to the previous proof. We first apply Jensen’s
inequality to obtain that F (θ)− F (θ?) ≤ 1

T

∑T
t=1(F (θt)− F (θ?)). Summing

the inequality (18) for t = 1, . . . , T − 1, we obtain that

E[F (θ)− F (θ?)] ≤ 1

T

T∑
t=1

E[F (θt)− F (θ?)]

≤ 1

T

T∑
t=1

E[F (θt)− F (θ?)]

≤ 1

T

T∑
t=1

E
[
E
[α(t− 1)

2
‖θt − θ?‖2 − αt

2
‖θt+1 − θ?‖2 +

1

2αt
‖vt‖2

∣∣∣θt]]
≤ 1

T
E
[ T∑
t=1

α(t− 1)

2
‖θt − θ?‖2 − αt

2
‖θt+1 − θ?‖2 +

1

2αt
‖vt‖2

]
≤ E

[
− αT

2T
‖θT − θ?‖2 +

1

T

T∑
t=1

1

2αt
‖vt‖2

]
≤ 1

T

T∑
t=1

ρ2

2αt
≤ ρ2

2αT
(1 + log(T )),

concluding the proof.

Note that one can actually choose R = +∞ in the previous theorem, so
that the same result holds without the projection step. However, it is most of
the time delicate to ensure that the expected norm of the gradients E[‖vt‖2]
stay bounded without this projection step. For example, for a quadratic
function of the form F (θ) = α

2
‖θ‖2, the norm of the gradient will blow up if

‖θ‖ diverges. An alternative method to ensure that the iterates do not blow

9



up consists in adding a regularization term to the objective function, that
is we minimize F (θ) + λ‖θ‖2 for some λ > 0 instead. See Theorem 5.5 in
[Bach, 2022] for details.

2 Application to risk minimization

We now review how those theorems translate in the setting of risk minimiza-
tion. Let F (θ) = RP (fθ) = EP [`(fθ(x),y)] be the P -risk of some predictor
fθ indexed by θ ∈ Rk, with minimizer θ?. Assume that we have access to
n i.i.d. samples (x1,y1), . . . , (xn,yn) from distribution P . We compare two
methods:

• (SGD) Let θ̂SGD be the output of stochastic gradient descent (with
projection) with n steps using the gradient estimates ∇θ`(fθ(xi),yi).

• (GD-ER) Let θ̂T be the output of gradient descent applied for T steps
on the empirical risk

θ 7→ Rn(fθ) =
1

n

n∑
i=1

`(fθ(xi),yi). (19)

Note that for any of those predictors θ̂, it holds that the expected excess of
risk can be decomposed into

E[RP (fθ̂)−R
?
P ] = E[RP (fθ̂)−RP (fθ?)]︸ ︷︷ ︸

optimization error

+RP (fθ?)−R?
P︸ ︷︷ ︸

approximation error

. (20)

The approximation error will depend only the ”size” of the set of predictors
F = {fθ, θ ∈ Rk}. On the contrary, the optimization error will depend on
our method to find the minimum of F . We consider two questions.

• (Q1) What is the minimal number n of samples required to get an
optimization error smaller than ε using (SGD) or (GD-ER)?

• (Q2) What is the associated time complexity of the algorithm?

For sake of conciseness, we will only answer (Q1) and (Q2) in the ”favorable”
case where, for every x ∈ X and y ∈ Y , the function θ ∈ Rk 7→ `(fθ(x), y)
is α-strongly convex and β-smooth. We further assume that the minimizer

10



θ? belong to B(0;R) with R of the form c/
√
β. One can try as an exercise

to answer those questions by removing for instance the α-strongly convex
assumption. We let κ = β/α ≥ 1 be the condition number. Also, we use the
notation Õ(εa) to denote a quantity of the form εa(log(ε)−1)b. This allows
us to hide logarithmic factors that are almost constant in practice.

Let us first consider (SGD). In this setting, every gradient vt is of the form
∇θ`θt(fθ(xi),yi). By definition of β-smoothness, the norm of this gradient is
smaller than

β‖θt − θ?‖ ≤ 2βR = ρ.

According to Theorem 5 with n = T , we need n = Õ(β2R2/(αε)) samples
to reach a precision ε. Evaluating the gradient ∇`(fθ(xi),yi) requires O(k)
operations, so that the time complexity of SGD is Õ(kβ2R2/(αε)). Recalling
that we assume that R2 ≤ c2/β, we obtain a time complexity of order

Õ(kκ/ε).

The analysis of (GD-ER) is slightly more complicated. Let θ̂∞ be the
minimizer of θ 7→ Rn(θ) (that is the actual empirical risk minimizer). One
can further bound the optimization error:

RP (fθ̂T )−RP (fθ?) ≤ RP (fθ̂T )−Rn(fθ̂T )

+Rn(fθ̂T )−Rn(fθ̂∞)

+Rn(fθ̂∞)−Rn(fθ?)

+Rn(fθ?)−RP (fθ?)

≤ 2 · sup
θ
|Rn(fθ)−RP (fθ)|+Rn(fθ̂T )−Rn(fθ̂∞)

where at the last line we use that Rn(fθ̂∞) ≤ Rn(fθ?) by definition of the
empirical risk minimizer. The first term in this last inequality can be shown
to be at least of order 1/

√
n (this follows from Rn(fθ) being the average

of n i.i.d. random variables). In particular, to reach an optimization error
E[RP (fθ̂T )−RP (fθ?)] of order ε, we need at least n = O(ε−2) samples. After
T steps of gradient descent, we have a control of the form

Rn(θT )−Rn(θ∞) ≤ exp(−T/κ)(Rn(θ0)−Rn(θ∞))

≤ exp(−T/κ)
β

2
‖θ0 − θ∞‖2

≤ exp(−T/κ)2R2β ≤ exp(−T/κ)2c2,

(21)
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where we also use the definition of β-smoothness and the fact that both ‖θ0‖
and ‖θ̂∞‖ are smaller than R. Therefore, to make this quantity smaller than
ε, a number T = Õ(κ) of steps of gradient descent are required. As computing
a single gradient ∇θRn(fθ) requires to compute n gradients ∇θ`(fθ(xi),yi),
the final complexity of gradient descent is in this situation

Õ(knT ) = Õ(knκ) = Õ(k/ε2κ).

We summarize the different results in the following table. Stochastic
gradient descent requires less samples and a smaller time complex-
ity to attain a given accuracy.

Algo. Num. of samples Complexity

SGD n = Õ(κ/ε) Õ(kκ/ε)

GD n = O(1/ε2) Õ(kκ/ε2)

Table 1: Summary of the convergence rates in the α-strongly convex and
β-smooth case.

References

[Bach, 2022] Bach, F. (2022). Learning theory from first principles.

12


	Stochastic gradient descent
	Application to risk minimization

