
Clustering methods

Vincent Divol

In previous chapters, we focused on the problem of supervised learning.
For instance, in the image classification problem, we are given n training
images x1, . . . ,xn that represent a car (yi = +1) or a plane (yi = −1).
The goal is then to use these examples to predict whether a new image
represents a car or a plane. We focus in this chapter on a different setting,
called unsupervised learning. In this setting, we only have access to the
inputs x1, . . . ,xn, and not to the outputs. The goal is to create groups
of inputs (called clusters) such that the inputs are similar to each other in
each cluster, whereas the inputs in different clusters are dissimilar. The
process of creating those different clusters is called clustering. In the object
identification example, a clustering method aims at identifying two groups
having different features in the set of observations x1, . . . ,xn (corresponding
to cars and planes) without having access to any label. We present two
different clustering methods: the k-means method, that can be applied to
observations in Rd, and spectral clustering, that take as an input a graph of
similarities between data points.

1 The k-means problem

Let X = (x1, . . . , xn) be a collection of n points in Rd. Assume that we want
to summarize this set of n points with just one point x∗. What should be
this point? A natural idea is to choose

x∗ =
x1 + · · ·+ xn

n
, (1)

the average of the n points. The average x∗ is actually the minimizer of the
function

y ∈ Rd 7→ 1

n

n∑
i=1

‖y − xi‖2. (2)

1

Figure 1: The k-means of two sets of points, for k = 3. For the second set of
points, there is no uniqueness of the k-means.

This can for instance be seen by computing for the gradient of the above
function, which is zero for y = x∗. Assume now that we want to summarize
the set using k points. A generalization of (2) consists in minimizing

Fk,X : (y1, . . . , yk) ∈ (Rd)k 7→ 1

n

n∑
i=1

min
l=1,...,k

‖yl − xi‖2, (3)

that is we are looking for k representatives (called centroids) such that the
sum of the squared distances between each xi and its closest centroid is
minimal. One call the minimizer Fk,X the set of k-means of X, that we
denote by (y∗1, . . . , y

∗
k). Note that the function Fk,X is non-convex in general

(see Figure 2). Therefore, there might be several minimizers of Fk,X, so we
should in theory say ’a’ set of k-means rather than ’the’ set of k-means. We
give in Figure 1 an example of data points x1, . . . , xn where several k-means
exist.

The k-means (y∗1, . . . , y
∗
k) of the set of points X divide X into k clusters,

by assigning each xi to the lth cluster if y∗l is centroid the closest to xi. The
simplest algorithm to compute the set of k-means is called Lloyd’s algorithm,
presented in Algorithm 1.

Each step of Lloyd’s algorithm is made of two substeps. First, we assign
every point xi to a cluster: the cluster l is chosen if xi is the closest to ytl .
Second, we update the centroid by defining yt+1

l as the average of the points

2

Figure 2: Graph of the function F2,X : (Rd)2 → R for some set of points
X ⊂ Rd, with d = 1. The function is not convex.

Algorithm 1: Lloyd’s algorithm

1 Initialization: centroids y01, . . . , y
0
k ∈ Rd;

2 for t = 0, . . . , T − 1 do
3 for l = 1, . . . , k do
4 let I tl = {i ∈ {1, . . . , n}, ytl is the centroid the closest to xi};
5 let nt

l be the number of elements in I tl ;

6 end
7 for l = 1, . . . , k do
8 let yt+1

l = 1
nt
l

∑
i∈Itl

xi;

9 end

10 end
11 Output: yT1 , . . . , y

T
k ∈ Rd;

3

xi of the cluster l.

Proposition 1. Lloyd’s algorithm coincides with Newton’s method applied
to the function Fk,X.

Proof. The function Fk,X is twice differentiable at (y1, . . . , yk) if there are no
points of the set X that are equidistant to some centroid yl. We will assume
that this condition is always satisfied. In this case, defining the sets Ils and
the numbers nls as in Algorithm 1, we can compute Fk,X:

Fk,X(y1, . . . , yk) =
1

n

n∑
i=1

min
l=1,...,k

‖yl − xi‖2

=
1

n

k∑
l=1

∑
i∈Il

‖xi − yl‖2.
(4)

The gradient of ∇Fk,X(y1, . . . , yk) is a vector of size dn that we write as∇y1Fk,X(y1, . . . , yk)
...

∇ykFk,X(y1, . . . , yk)

 ,

where ∇ylFk,X(y1, . . . , yk) is the partial gradient of Fk,X with respect to yl
(that is a vector in Rd). Let us compute ∇y1Fk,X(y1, . . . , yk). In (4), only the
first term of the sum depends on y1. Therefore,

∇y1Fk,X(y1, . . . , yk) =
2

n

∑
i∈I1

(yl − xi) =
2n1

n

(
y1 −

1

n1

∑
i∈I1

xi

)
. (5)

Therefore,

∇Fk,X(y1, . . . , yk) =
2

n


n1

(
y1 − 1

n1

∑
i∈I1 xi

)
...

nk

(
yk − 1

nk

∑
i∈Ik xi

)
 .

The gradient ∇Fk,X(y1, . . . , yk) is decomposed into k blocks, where the lth
block depends linearly on yl. The Hessian ∇2Fk,X(y1, . . . , yk) is therefore a

4

diagonal matrix equal to

2

n

n1Idd

. . .

nkIdk

 (6)

By definition, an iterate of Newton’s method is given byy
′
1
...
y′k

 =

y1...
yk

−∇2Fk,X(y1, . . . , yk)−1∇Fk,X(y1, . . . , yk)

=

y1...
yk

−


1
n1

Idd

. . .
1
nk

Idk



n1

(
y1 − 1

n1

∑
i∈I1 xi

)
...

nk

(
yk − 1

nk

∑
i∈Ik xi

)


=

y1...
yk

−
y1 −

1
n1

∑
i∈I1 xi

...
yk − 1

nk

∑
i∈Ik xi


=


1
n1

∑
i∈I1 xi
...

1
nk

∑
i∈Ik xi

 .

Those iterates are exactly the one given by Lloyd’s algorithm.

When using Lloyd’s algorithm, we are applying Newton’s method on the
function Fk,X, that is in general not convex. It is therefore not surprising
that the performance of Lloyd’s algorithm will crucially depend on the ini-
tialization. If the initialization (y01, . . . , y

0
k) is close enough to the minimizers

(y∗1, . . . , y
∗
k), then Lloyd’s algorithm will converge very quickly to the mini-

mizer (as expected for Newton’s method). However, with bad initialization,
the iterates of Lloyd’s algorithm will remain stuck in local minima that corre-
spond to configurations far from being optimal, see Figure 3. The k-mean++

algorithm gives a procedure to find a good initialization for Lloyd’s algorithm
[Arthur and Vassilvitskii, 2006]. It is the default initialization method in the
Python scikit-learn library, and shows good performance in practice.

Example 2. Add example.

5

Figure 3: With bad initialization, Lloyd’s algorithm may converge to a (very)
bad configuration. The three centroids computed by Lloyd’s algorithm with
a bad initialization are displayed in red, and the associated clusters in re-
spectively green, orange, and blue.

2 Spectral clustering

Spectral clustering is in many ways an improvement upon k-means. Unlike
k-means, that can only be applied to observations in Rd, spectral clustering
can be applied to any set of observations, as long as a notion of similarity
between the observations is defined.

Definition 3. A weighted graph G := G(W) with n vertices is described
by a n × n matrix of weights W = (Wij)1≤i,j≤n, where the weights Wij are
nonnegative and symmetric (that is Wij = Wji).

Some examples of weighted graphs include:

1. The weight matrix W only contains 0 and 1. In this case, we think of
G as representing a non-weighted graph: if Wij = 1, then there is an
edge between the vertex i and the vertix j, and if Wij = 0 then there
is no edge.

2. A particular example of non-weighted graph is the ε-neighborhood
graph. Let x1, . . . , xn ∈ Rd and let ε > 0. We define Wij = 1 if

6

Figure 4: The ε-neighborhood graph of a set of points in R2.

Figure 5: The σ-gaussian graph of a set of points in R2. Thicker edges
indicate higher weights.

7

‖xi − xj‖ ≤ ε, and 0 otherwise: we connect two points by an edge if
and only if they are at distance less than ε.

3. A variation of this construction is the gaussian graph, where the weights
Wij are given by exp(−‖xi − xj‖2/(2σ2)) for some parameter σ > 0.
Two nearby points are assigned a large weight, whereas if two points
xi and xj are far away, then the weight Wij is small.

Spectral clustering allows one to detect the presence of clusters in a
weighted graph. Informally, a cluster is a set of vertices such that the similar-
ity between two points of the cluster is high, whereas the similarity between
a point of a cluster and a point outside the cluster is small. In the graph
setting, the similarity between vertices is given by the weight matrix W .

Definition 4. Let G be a weighted graph with weight matrix W . Let i ∈
{1, . . . , n}.

1. The neighbors of i are the vertices j such that Wij > 0. We then
write i ∼G j.

2. The degree Di of a vertex i is defined as Di =
∑n

j=1Wij. We let D be
the n× n diagonal matrix with entries Di on the diagonal. We call D
the degree matrix.

3. We say that two vertices i and j are connected if there exists a path
i = i1, i2, . . . , ik−1, ik = j such that il ∼G il+1 for every 1 ≤ l ≤ k − 1.

4. A connected component in G is a set C of vertices in G such that all
pairs of vertices in C are connected, but no vertices in C is connected
to a vertex not in C.

A first natural idea is to define the clusters in our graph as the con-
nected components. By construction, similarity is positive between points
in a connected component, but zero between two points in different clusters.
However, this notion is not robust to noise, see Figure 6. Indeed, the top
graph in Figure 6 has two connected component, but it suffices to add one
edge (bottom graph) to create a graph with a single connected component.
We still want to think about the bottom graph as containing two clusters.

To built upon this first idea, we need to make the transform the notion of
”being connected” into a quantitative notion, that is we need to make sense

8

Figure 6: Top: a graph with two connected components. Bottom: a graph
with a single connected component, but two clusters.

9

of the sentence ”How connected are two vertices?”. Here is a very elegant
way to do so. Let i and j be two vertices. Consider a particle p starting at i
and that will randomly walk around the graph: at step t, if the particle p is
at vertex k, then it will move to one of the neighbors l of k with probability
equal to Qkl = Wkl/Dk. Informally, if the particle p takes a lot of time to go
from vertex i to vertex j, then it means that the two vertices are not well-
connected. On the opposite, the random particle p goes on average from i to
j in a short amount of time, then i and j can be considered closed.

Definition 5. We define the probability transition matrix Q as D−1W , its
entries are given by Qij = Wij/Di. The (random walk) Laplacian1 of the
graph G is the matrix L = Idn −Q.

The spectral properties of the Laplacian (namely the eigenvalues and the
eigenvectors of the matrix L) contain relevant information on the geometry
of the graph G, see Figure 7. Let A ⊂ {1, . . . , n}. We let eA be the vector in
Rn with entries (eA)i = 1 if i ∈ A and (eA)i = 0 otherwise.

Proposition 6. Let G be a weighted graph with associated Laplacian L.

1. All the eigenvalues of L are nonnegative.

2. The matrix L has always 0 as an eigenvalue.

3. The multiplicity of 0 as an eigenvalue is the number k of connected
components of the graph G. An orthogonal basis of the eigenspace as-
sociated to the eigenvalue 0 is given by (eC1 , . . . , eCk) where C1, . . . , Ck
are the connected components of G.

Proof. Introduce the matrix L′ = D1/2LD−1/2. The eigenvalues and eigen-
vectors of L and L′ are related: for λ ∈ R and u ∈ Rn, it holds that Lu = λu
if and only if L′v = λv, where v = D1/2u. In particular, L and L′ have the
same eigenvalues, and the eigenvectors of L and L′ are related by the simple
relation v = D1/2u.

1The name Laplacian is also used in calculus to refer to a differential operator. The
interested reader may find connections between the two concepts in the Appendix.

10

Figure 7: A basis of two eigenvectors of the eigenspace of L corresponding to
the eigenvalue 0. The color of the vertex i can go from purple (the ith entry
ui of the eigenvector u is equal to 0) to red (ui is equal to 1).

11

1. It suffices to show that L′ is positive semi-definite. Let v ∈ Rn. It holds
that

v>L′v = v>v − v>D−1/2WD−1/2v

=
n∑

i=1

v2i −
∑

1≤i,j≤n

Wij
vivj√
DiDj

=
n∑

i=1

Di

Di

v2i −
∑

1≤i,j≤n

Wij
vivj√
DiDj

=
∑

1≤i,j≤n

Wij
v2i
Di

−
∑

1≤i,j≤n

Wij
vivj√
DiDj

(by definition of Di)

=
1

2

(∑
1≤i,j≤n

Wij
v2i
Di

− 2
∑

1≤i,j≤n

Wij
vivj√
DiDj

+
∑

1≤i,j≤n

Wij
v2i
Di

)

=
1

2

(∑
1≤i,j≤n

Wij
v2i
Di

− 2
∑

1≤i,j≤n

Wij
vivj√
DiDj

+
∑

1≤i,j≤n

Wij

v2j
Dj

)

=
1

2

∑
1≤i,j≤n

Wij

(
vi√
Di

− vj√
Dj

)2

≥ 0, (7)

where we switch the roles of the dummy variables i and j in the last
sum at the second to last line. All in all, this implies that L′ is positive
semi-definite, and therefore so is L.

2. It is clear from (7) that the vector v = (
√
D1, . . . ,

√
Dn) is an eigenvec-

tor of L′ with associated eigenvalue 0. Therefore 0 is also an eigenvalue
of L.

3. Note also that the D−1/2v is an eigenvector of L, which is the vector
with 1 in all of its entries. Assume that k = 1 (there is only one
connected component), and let us show that this is the only eigenvector
of L′ (up to a constant). Having v>L′v = 0 is equivalent to having
vi/
√
Di = vj/

√
Dj for every vertices i, j with Wij > 0. As all the

vertex are connected (because k = 1), we can always find a path from
any vertex i1 to some other vertex im. Going from vertex to vertex
in this path, we see that the quantity vi/

√
Di stays constant along

that path. In particular, this implies that the vector v must satisfy

12

vi/
√
Di = cst for every vertex i. This implies that v = (

√
D1, . . . ,

√
Dn)

is the only eigenvector of L′ associated with 0 (up to a multiplicative
constant). Therefore, D−1/2v is the only eigenvector of L associated
with 0 (up to a multiplicative constant).

Let us now treat the case k > 1. In this case, up to relabelling the
indexes, we can write the matrix L as a block diagonal matrix

L =

L1
...
Lk


where the block Ll is the Laplace matrix associated with the subgraph
given by the connected component Cl. As 0 is an eigenvalue with mul-
tiplicity 1 of each of the matrix Ll, it is an eigenvalue of L with multi-
plicity k. Furthermore, a basis of the eigenspace of L associated with
0 is given by one eigenvector of each of the block Ll with 0 eigenvalue.
According to the case k = 1, the vectors eCl are such eigenvectors.

To put it simply, the multiplicity of 0 as an eigenvalue of the Laplacian L
gives the number of connected components, while the associated eigenvectors
exactly give the said connected components: all the relevant information on
the connected components is given by the spectral properties of the Lapla-
cian matrix. However, the Laplacian matrix is a much richer object, that is
more robust to perturbation. Indeed, if we consider a graph with two large
connected components, and add a single edge between those two components,
then only one single connected component remain, as said earlier. The mul-
tiplicity of 0 in the Laplacian matrix has moved from 2 to 1. However, one
can show that there is now a nonzero eigenvalue λ in the spectrum of L that
is very small. Also, an eigenvector corresponding to this eigenvalue will be
approximately 0 on one connected component and approximately 1 on the
other, that is to say the eigenvector is an approximation of the eigenvector
eC1 given by Proposition 6. This phenomenon is showcased in Figure 8.

The spectral clustering method relies on this phenomenon, see Algorithm
2. For i ∈ {1, . . . , n}, let ei = e{i} be the vector in Rn representing the vertex
i. In the case where G contains exactly k connected components, one has
〈ei, eCl〉 = 1 if i ∈ Cl and 0 otherwise. Therefore, in this ”ideal” situation,

13

Figure 8: Top: the eigenvector of L corresponding to the eigenvalue 0. Bot-
tom: the eigenvector of L corresponding to the smallest positive eigenvalue,
equal to ' 10−3.

14

the points a1, . . . , an ∈ Rk are all on one of the k axes of Rk (in its canonical
basis). In particular, Lloyd’s algorithm will have no trouble clustering the
points a1, . . . , ak. In the more realistic setting where only ”approximate”
connected components exist, one can show that the points ai corresponding
to the ”approximate” lth connected component will stay close to the lth axis
of Rk. Therefore, Lloyd’s algorithm will still be able to identify the clusters.

Algorithm 2: Spectral clustering

1 Input: weighted graph G with weight matrix W ; number of clusters
k;

2 compute the Laplace matrix L;
3 compute the eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn and the associated

eigenvectors u1, . . . , un.
4 for i = 1, · · · , n do
5 let ai = (〈u1, ei〉, . . . , 〈uk, ei〉) ∈ Rk;
6 end
7 apply Lloyd’s algorithm to a1, . . . , an ∈ Rk;

Appendix - the Laplace matrix and the heat

equation

The reader familiar with calculus may have already heard about the Lapla-
cian in another context. If f is a twice differentiable function from Rd to R,
the Laplacian of f is defined by

∆f = −
d∑

j=1

∂2f

∂x2j
, (8)

(note the sign convention that we use here). How is this operator related to
the Laplacian on the graph that we have defined in this chapter? In 1822,
Joseph Fourier published his treatise Théorie analytique de la chaleur, where
he considered the following problem. Consider a metal rod (that we identify
with [0, 1]) whose temperature at both extremities is fixed at 1 throughout
the whole experiment. Assume that at time t = 0 a certain distribution of
heat f0 is given in the rod (mathematically, a function f0 ≥ 0 with

∫
f0 =

15

1). How will the distribution of heat evolve through time? Our intuition
dictates that as time t progresses, the distribution of heat ft at time t will
become smoother, until the temperature is uniform in the rod at t = ∞,
corresponding to f∞ = 1. The equation governing the distribution of heat is
the heat equation

∂ft
∂t

+ ∆ft = 0. (9)

Solving this equation indeed shows that the distribution of heat ft will con-
verge exponentially fast to a uniform temperature. A microscopic vision of
the heat diffusion process consists in picturing a large number of small par-
ticles randomly moving in the rod. At each time t, the particle will with
probability 1/2 infinitesimally moves to the left, or to the right. The initial
distribution f0 represents exactly the original distribution of those particles
in the rod (if the heat is originally high at a point x in the rod, then f0 is
high, meaning that there are originally a lot of particles oscillating around x).
For a very small value of t, we can approximate the time derivative ∂ft/∂t
by (ft − f0)/t. The heat equation (9) then becomes

ft ' f0 − t∆f0 = (Id− t∆)f0.

This means that the distribution of heat at a small time t is approximately
given by the operator (Id− t∆).

Let us now go back to the discrete world. Consider the graph Gn with n
vertices, and weights

Wij =

{
1 if |i− j| = 1

0 otherwise.
(10)

The graph Gn is a ”line” graph, that is a discrete analogue of the metal rod.
If we start with a particle at position i, that moves at random, then after one
step, the probabilities of the position of i are given by the vector Qi (where
Q = D−1W is the probability transition matrix). Let us now consider a large
number of particles on the graph, distributed according to some distribution
u0 ∈ Rn (with nonnegative entries and such that

∑n
i=1(u0)i = 1). We make

all those particles take one random step on the graph. After this step, the
distribution of the particles is given by Qu1 = (Idn − L)u0 (by definition
of the graph Laplacian). This is exactly the discrete time analogue of the
equation ft ' (Id− t∆)f0.

16

Therefore, the graph Laplacian and the Laplace operator from calculus
share the same physical meaning: they both represent how particles moving
at random behave on average on a small scale of time.

References

[Arthur and Vassilvitskii, 2006] Arthur, D. and Vassilvitskii, S. (2006). k-
means++: The advantages of careful seeding. Technical report, Stanford.

17

	The k-means problem
	Spectral clustering

