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In this chapter, we investigate a class of predictors, called local averaging
methods. Those methods are defined by computing a weighted average of the
different outputs yi from a sample of n observations (x1,y1), . . . , (xn,yn).
As such, those methods are simple to compute and to interpret. However,
they are best suited to low-dimensional setting as they suffer from the curse
of dimensionality.

1 The regression problem

Let (x1,y1), . . . , (xn,yn) be a training sample with distribution P . We focus
here on regression on the cube [0, 1]d: the set of inputs is X = [0, 1]d, the set
of outputs is Y = R, and we use the squared loss `(y, y′) = (y − y′)2. Before
studying local averaging methods, let us recall some basic facts on regression.
We proved several weeks ago that the Bayes predictor for the squared loss is
given by f ?

P (x) = EP [y|x = x], the conditional expectation of y given that
x = x. We can always write y as

y = f ?
P (x) + e (1)

where e is defined as e = y − f ?
P (x). By construction, E[e|x] = 0. We may

therefore think of y as being obtained by corrupting f ?
P (x) by some random

centered noise e. Note however that the distribution of the noise e may
depend on x.

Example 1.1. Each input x represents a street in a city (the city being repre-
sented by a square [0, 1]2), and y represents the CO2 concentration at x. The
output y will vary depending on when the CO2 concentration is measured.
In this setting, f ?

P (x) represents the average CO2 concentration at the street
x. The distribution of the noise e may vary depending on x: for example,
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some streets x in the city may have higher variations of CO2 concentration
than others, so that E[e2|x = x] will be larger for those streets.

The Bayes risk R?
P is equal to

R?
P = EP [(f ?

P (x)− y)2] = EP [e2]. (2)

Fix a function f : X → R. Let us compute RP (f) = EP [(f(x)−y)2]. To
do so, we first compute EP [(f(x)− y)2|x]:

EP [(f(x)−y)2|x] = EP [(f(x)− f ?
P (x)− e)2|x]

= EP [(f(x)− f ?
P (x))2|x] + 2E[(f(x)− f ?

P (x))e|x] + E[e2|x]

= (f(x)− f ?
P (x))2 + 2(f(x)− f ?

P (x))E[e|x] + E[e2|x]

= (f(x)− f ?
P (x))2 + E[e2|x],

where we use that E[e|x] = 0. By the law of total expectation,

RP (f) = EP [EP [(f(x)− y)2|x]]

= E[(f(x)− f ?
P (x))2] + E[E[e2|x]]

= E[(f(x)− f ?
P (x))2] +R?

P .

Therefore, the excess of risk of f is equal to

RP (f)−R?
P = EP [(f(x)− f ?

P (x))2] =

∫
[0,1]d

(f(x)− f ?
P (x))2dPx(x). (3)

Two information are relevant to understand this model: properties of the
noise e and regularity of the Bayes predictor f ?

P . If f ?
P is a smooth function

(for example Lipschitz continuous) and the noise e is small, then we expect
f ?
P (x) to be similar to yi for xi close to x. This yields to the following heuritic.

Heuristic. Given an input x, the predictor f̂(x) should be similar to the
outputs yi for xi close to x.

We introduce a large class of simple predictors that satisfy this heuristic.
Let w1(x), . . . , wn(x) be weights with

∑n
i=1wi(x) = 1 and define

f̂w(x) =
n∑

i=1

wi(x)yi. (4)

The weights wi(x) depend on the inputs x1, . . . ,xn. According to the heuris-
tic, the weights wi(x) should be high if x is close to xi, and low otherwise.

Let us write ei = yi− f ?
p (xi). We make the following assumptions on the

model.
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(A1) the Bayes predictor f ?
P : [0, 1]d → R is α-Lipschitz continuous, that is,

for all x, x′ ∈ [0, 1]d,

|f ?
P (x)− f ?

P (x′)| ≤ α‖x− x′‖. (5)

(A2) the Bayes predictor f ?
P is bounded by β > 0: for all x ∈ [0, 1]d, |f ?

P (x)| ≤
β.

(A3) the error e is bounded: |e| ≤ σ for some σ > 0.

Under this set of assumptions, we can obtain a general decomposition
result. Let x ∈ [0, 1]d. We have

|f̂w(x)− f ?
P (x)| =

∣∣∣∣∣
n∑

i=1

wi(x)(f ?
P (xi) + ei)− f ?

P (x)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

wi(x)(f ?
P (xi)− f ?

P (x))

∣∣∣∣∣+

∣∣∣∣∣
n∑

i=1

wi(x)ei

∣∣∣∣∣
≤ α

n∑
i=1

|wi(x)|‖xi − x‖+

∣∣∣∣∣
n∑

i=1

wi(x)ei

∣∣∣∣∣ . (6)

We refer to the first term in this decomposition as the approximation error
App(x): it measures how the local average estimator is able to approximate
the Bayes predictor at the point x. The second term measures the inherent
noise present in the model, and we call it the fluctuation error at x, denoted
by Fluc(x). Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain

(f̂w(x)− f ?
P (x))2 ≤ 2App(x)2 + 2Fluc(x)2. (7)

Let us see how this general decomposition can be used to bound the excess
of risk for different weighting schemes.

2 Partition estimators

A partition of a set X is a collection A = (Aj)j=1,...,J of subsets of X that are

pairwise disjoint (that is Aj ∩Aj′ = ∅ if j 6= j′) and such that
⋃J

j=1Aj = X .

3



Definition 2.1 (Partition estimator). Consider (x1,y1), . . . , (xn,yn) a train-
ing sample of size n from a distribution P , with inputs xi ∈ [0, 1]d and out-
puts yi ∈ R. Let A be a partition of [0, 1]d. For x ∈ X , we let A(x) be
the the element Aj of the partition such that x ∈ Aj. We define the weights
wi : [0, 1]d → R associated with the partition A by

wi(x) :=
1{xi ∈ A(x)}∑n

i′=1 1{xi′ ∈ A(x)}
. (8)

If
∑n

i′=1 1{xi′ ∈ A(x)} = 0, then, by convention, we let wi(x) = 0. The

partition estimator f̂A associated with the partition A is the local average
estimator with weights wi. The predictor f̂A is also called a regressogram.

The predictor f̂A has a very simple structure. For j = 1, . . . , J , let Ij be
the set of indexes i such that xi ∈ Aj, and let nj be the size of Ij. If nj = 0,

then f̂w(x) = 0 for x ∈ Aj. Otherwise, if nj > 0 and x ∈ Aj, the predictor

f̂A(x) is equal to

f̂A(x) =
n∑

i=1

wi(x)yi =

∑n
i=1 1{xi ∈ Aj}yi∑n
i′=1 1{xi′ ∈ Aj}

=
1

nj

∑
i∈Ij

yi.

To put it otherwise, the prediction f̂w is constant on each set Aj, equal to
the average of the outputs yi such that the corresponding input xi belongs
to Aj.

Example 2.2. Let X = [0, 1]d and let L > 0 be an integer. For 1 ≤ j1, . . . , jd ≤
L, let ~j = (j1, . . . , jd) and

A~j =

[
j1 − 1

L
,
j1

L

)
× ·
[
jd − 1

L
,
jd
L

)
. (9)

The cubes A~j for 1 ≤ j1, . . . , jd ≤ L define a partition AL of X into a grid

of cubes of side length 1/L. The predictor f̂AL
=: f̂L associated with the

cube partition is constant on each of these cubes. For d = 1, this is simply a
histogram.

The remainder of this section is dedicated to analyzing the cube partition
estimator. We denote by f̂L the partition estimator with partition AL. Let
us first give a short summary of the proof strategy. We know that f̂L(x) is
equal to the average of the outputs yi for xi being in the same cube as x.
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As yi = f ?
P (xi) + ei, and as xi is at distance 1/L from x, the output yi is at

distance α/L+ |ei| from f ?
P (x) (see Figure 1). When we average the different

outputs yi, the different error terms ei will cancel out on average, so that we
get an error of order α/L+σ/

√
nj̃. The conclusion is obtained by controlling

nj̃, which follows a binomial random variable.

Let us now turn to the rigorous mathematical analysis. Fix an index ~j,
and assume for now that nj̃ > 0. For x ∈ A~j, it holds that

|App(x)| ≤ α2

(
n∑

i=1

|wi(x)|‖xi − x‖

)2

≤ α2

 1

nj̃

∑
i∈I~j

‖xi − x‖

2

≤ α2dL−2,

(10)

where the last inequality comes from that ‖x − xi‖ ≤
√
d/L when x and xi

belong to the same cube A~j.
The fluctuation term is equal to

Fluc(x) =
1

nj̃

∑
i∈I~j

ei. (11)

Conditionally on I~j, the random variables (ei)i∈I~j are independent and
identically distributed. Therefore, the conditional expectation of the fluctu-
ation error with respect to the training sample is equal to

E
[

Fluc(x)2
∣∣ I~j] =

1

nj̃
2

∑
i∈I~j

|ei|2 ≤
σ2

nj̃

. (12)

From (7), we obtain

E[(f̂L(x)− f ?
P (x))21{nj̃ > 0}] ≤ 2

α2d

L2
+ 2E[1{nj̃ > 0}σ

2

nj̃

]. (13)

It remains to control E[1{nj̃ > 0}nj̃
−1]. Note that nj̃ follows a binomial

random variable of parameters n and p~j := P (x ∈ A~j). Indeed, nj̃ is the sum
over all observations of independent Bernoulli random variables, equal to 1
if the observation is in A~j, and 0 otherwise.
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Figure 1: Decomposition of the distance between yi and f ?
P (x) into the

stochastic error term ei and the distance between f ?
P (x) and f ?

P (xi), which
is bounded thanks to the Lipschitz property of f ?

P .
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Lemma 2.3. Let N be a binomial random variable of parameter n and p.
Then,

E[1{N > 0}N−1] ≤ 2

pn
. (14)

Proof. We recall the formula 1
k+1

(
n
k

)
= 1

n

(
n+1
k+1

)
. The formula for the density

of a binomial random variable implies that

E[1{N > 0}N−1] =
n∑

k=1

(
n

k

)
pk(1− p)n−k 1

k

≤
n∑

k=1

(
n

k

)
pk(1− p)n−k 2

k + 1

≤ 2

n+ 1

n∑
k=1

(
n+ 1

k + 1

)
pk(1− p)n−k

≤ 2

n+ 1

n+1∑
l=2

(
n+ 1

l

)
pl−1(1− p)n−l+1

≤ 2(1− p)
p(n+ 1)

n+1∑
l=2

(
n+ 1

l

)
pl(1− p)n−l

≤ 2(1− p)
p(n+ 1)

≤ 2

pn
.

Using the lemma and (13) yields

E[(f̂L(x)− f ?
P (x))21{nj̃ > 0}] ≤ 2

α2d

L2
+

4σ2

p~jn
. (15)

When nj̃ = 0, then f̂L(x) = 0 by convention. In that case, we obtain

E[(f̂L(x)− f ?
P (x))21{nj̃ = 0}] = f ?

P (x)2P(nj̃ = 0) = f ?
P (x)2(1− p~j)

n

≤ β2 exp(−np~j),
(16)

where we use Assumption (A2) and the formula for the probability of a bino-
mial random variable being equal to 0. Putting the two estimates together
yields

E[(f̂L(x)− f ?
P (x))2] ≤ 2

α2d

L2
+

4σ2

p~jn
+ β2 exp(−np~j). (17)
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Recall from (3) that the excess of risk of f̂L is equal to

RP (f̂L)−RP (f ?
P ) =

∫
[0,1]d

(f̂L(x)− f ?
P (x))2dPx(x).

We obtain the following bound on the expected excess of risk (where expec-
tation represents expectation with respect to the training sample):

E[RP (f̂L)−RP (f ?
P )] =

∫
[0,1]d

E[fL(x)− f ?
P (x))2]dPx(x)

=
∑
~j

∫
A~j

E[fL(x)− f ?
P (x))2]dPx(x)

≤
∑
~j

∫
A~j

(2
α2d

L2
+

4σ2

p~jn
+ β2 exp(−np~j))dPx(x)

≤
∑
~j

p~j(2
α2d

L2
+

4σ2

p~jn
+ β2 exp(−np~j))

≤ 2
α2d

L2
+

4σ2Ld

n
+ β2

∑
~j

p~j exp(−np~j)),

where we use at the last line that there are exactly Ld indexes ~j. To conclude,
we need to bound the last term in the above equation. One can check that
this sum is maximized in the case where all the probabilities p~j are equal:

this sum is therefore smaller than exp(−nL−d).

Theorem 2.4 (Excess of risk of the cube partition estimator). Assume that
conditions (A1)-(A3) hold. Then, the cube partition estimator f̂L with side
length 1/L satisfies

E[RP (f̂L)−RP (f ?
P )] ≤ 2

α2d

L2
+

4σ2Ld

n
+ β2 exp(−nL−d). (18)

In particular, if L = cn1/(d+2) for some constant c, we obtain a bound of the
form

E[RP (f̂L)−RP (f ?
P )] ≤ Cn−2/(d+2) (19)

for some other constant C.
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What should we take away from the above theorem? First, a good news:
the partition estimator is consistent, as the excess of risk converges to 0.
However, the rate of convergence gets increasingly slow when the number of
features d increases. We say that partition estimators suffer from the
curse of dimensionality. For example, for d = 18, the rate of convergence
is equal to n−0.1, which is only equal to 0.1 even for a number of observations
equal to n = 1010. This suggests that partition estimators should only be
used in low-dimensional settings.

Example 2.5. In this example, we are exploring whether there is a relation
between the oil price and the volume of oil sold at a given day at the Brent
Complex, a physically and financially traded oil market based around the
North Sea of Northwest Europe. The pairs (x1,y1), . . . , (x1,y1) represent an
oil price (x value) and a volume sold (y value). The dataset was downloaded
from Kaggle1. In this example d = 1 and there are n = 2859 observations.
Theorem 2.4 suggests that we should choose L of order n1/3 ' 15 when
designing a partition estimator. This is what is done in Figure 2. We also
plot the test error (obtained by randomly splitting the dataset in a training
set and a testing set) as a function of L. We see that the minimum of the test
error is obtained for L roughly of order 50: the theorem only gives an order
of magnitude of what should be a good value of L, and nothing more precise.
Moreover, we encounter once again two well-known phenomena: underfitting
for L too small, and overfitting for L too large. In practice, L should be
selected through cross-validation.

3 Nadaraya-Watson estimators

The partition estimator of the previous section can be summarized in one
sentence: the prediction f̂L(x) is equal to the average of the outputs yi

corresponding to the inputs xi being in the same cube as x. In this section,
we investigate a variation on this same idea. We choose as a prediction at
the point x the average of the outputs yi such that xi is at distance less than
h from x, where h > 0 is a fixed parameter. This is equivalent to defining a
local averaging estimator with weights

wi(x) =
1{‖x− xi‖ ≤ h}∑n

i′=1 1{‖x− xi′‖ ≤ h}
.

1See https://www.kaggle.com/datasets/psycon/historical-brent-oil-price-from-2000-to-202204.
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Figure 2: Top: prediction f̂L0 for L0 = n1/3. Bottom: Expected risk for
different values of L. The vertical line indicates L0. The minimum excess of
risk is attained for L roughly equal to 3L0.
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This can be generalized to other weighting schemes.

Definition 3.1. Consider (x1,y1), . . . , (xn,yn) a training sample of size n
from a distribution P , with inputs xi ∈ [0, 1]d and outputs yi ∈ R. Let
K : Rd → R be a function with

∫
K = 1 and let h > 0. Let Kh be the

function defined by Kh(x) = h−dK(x/h) for x ∈ Rd. The Nadaraya-Watson
estimator f̂NW

h with kernel Kh is defined as the local averaging estimator with
weights at x ∈ [0, 1]d equal to

wi(x) :=
Kh(x− xi)∑n

i′=1 Kh(x− xi′)
. (20)

The word ”kernel” in the above definition is the one that is commonly
used by statisticians. Note however that the local averaging method is not
a kernel method and that the two should not be confused.

The analysis of the Nadaraya-Watson estimator is more complex than
the one of the partition estimator, and we refer the interested reader to
[Tsybakov, 2008, Chapter 1.5]. Let us here only mention that under as-
sumptions similar to assumptions (A1)-(A3), it is possible to show that the
Nadaraya-Watson estimator f̂h satisfies

E[RP (f̂NW
h )−RP (f ?

P )] ≤ Cn−2/(d+2), (21)

where h is of order n−1/(d+2) and C is a constant depending on the parameters
of the model. Therefore, the Nadaraya-Watson estimator attains the same
rate of convergence as the partition estimator and also suffers from the curse
of dimensionality. This rate can be improved should the Bayes predictor f ?

P

be k-times differentiable. In this case, one can build a Nadaraya-Watson
estimator attaining a rate of convergence of order n−2k/(d+2k).

Example 3.2. A simple choice of kernel is given by the gaussian kernel defined
by K(u) = 1/(2π)d/2 exp(−‖u‖2/2) for u ∈ Rd. We implement the Nadaraya-
Watson estimator on the same dataset as in Example 2.5, for the gaussian
kernel with different choices of bandwidths h. Once again, the performance
of the estimator will crucially depend on h (see Figure 3), a parameter which
should be selected thanks to cross-validation to avoid both underfitting and
overfitting.
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Figure 3: Nadaraya-Watson predictor f̂NW
h for different values of h on the oil

dataset.

4 Nearest-neighbor methods

Here is a very simple idea to make a prediction f̂(x) at x ∈ [0, 1]d: look
at the point xi the closest to x, and choose f̂(x) = yi. Such a prediction
is called the 1-nearest-neighbor estimator. A variation of this scheme is the
k-nearest-neighbor (or k-NN) estimator, which is defined by averaging the
outputs yi corresponding the k inputs that are the closest from x.

Definition 4.1. Consider (x1,y1), . . . , (xn,yn) a training sample of size n
from a distribution P , with inputs xi ∈ [0, 1]d and outputs yi ∈ R. Let
k ≥ 1 be an integer. For x ∈ [0, 1]d, we order the inputs xi according to their
distance to x:

‖x− xi1(x)‖ ≤ ‖x− xi2(x)‖ ≤ · · · ≤ ‖x− xin(x)‖. (22)

We let Ik(x) = {i1(x), . . . , ik(x)} and define the weights

wi(x) =

{
1
k

if i ∈ Ik(x)

0 otherwise.
(23)
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Figure 4: Definition of the indexes i1(x), . . . , i4(x) .

The k-NN estimator f̂NN
k is the local averaging estimator associated with the

weights wi.

The k-NN estimator at a point x is equal to

f̂NN
k (x) =

1

k

∑
i∈Ik(x)

yi, (24)

that is we average the outputs of the k nearest inputs from x. The approxi-
mation error is equal to

App(x) := α

n∑
i=1

|wi(x)|‖xi − x‖ =
α

k

∑
i∈Ik(x)

‖xi − x‖, (25)

that is the average distance between x and its k-nearest neighbors. The
fluctuation error is given by

Fluc(x) :=
n∑

i=1

wi(x)ei =
1

k

∑
i∈Ik(x)

ei. (26)
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Conditionally on Ik(x), this is a sum of i.i.d. random variables bounded by
σ2. We thus obtain as in Section 2 that

E[Fluc(x)2] ≤ σ2

k
. (27)

The main part of the analysis of the k-NN estimator consists in controlling
the distance ‖x − xik(x)‖ between a point x and its kth nearest neighbor,
allowing us to bound the approximation error App(x). Let us first consider
the case k = 1. To make our life easier, we will assume that the distribution
Px of the inputs xi has a lower bounded density on the cube.

(A4) The distribution Px has a density p on [0, 1]d. Furthermore, there exists
a constant pmin > 0 such that p(x) ≥ pmin for every x ∈ [0, 1]d.

Condition (A4) ensures that the inputs xis cover all regions of the cube,
and that none is missed out (which would be the case if the density p is zero
on that region).

Lemma 4.2. Assume that condition (A4) holds and let x ∈ [0, 1]d. Let ωd

be the volume of the unit ball in Rd. Then, for every t ≥ 0,

P(‖x− xi1(x)‖ ≥ t) ≤ exp(−ωd2
−dpminnt

d). (28)

Proof. The condition ‖x−xi1(x)‖ ≥ t is satisfied if and only if the ball B(x, t)
centered at x of radius t does not intersect {x1, . . . ,xn}. The number N of
inputs xi that fall in the ball B(x, t) follows a binomial random variable of
parameter n and P (B(x, t)). Therefore,

P(‖x− xi1(x)‖ ≥ t) = (1− P (B(x, t))n ≤ exp(−nP (B(x, t))). (29)

The probability P (B(x, t)) is lower bounded by∫
[0,1]d

1{u ∈ B(x, t)}p(u)du ≥ pmin

∫
[0,1]d

1{u ∈ B(x, t)}du ≥ pmin
ωd

2d
td.

Indeed, at least a fraction of 1/2d of the ball B(x, t) intersects the cube [0, 1]d

(the worst case being attained for x being a corner of the cube).

Going from a bound on the tail probability to a bound on the second
moment is possible thanks to the next lemma.

14



Lemma 4.3. Let z be a nonnegative random variable. Then

E[z2] = 2

∫ +∞

0

uP(z ≥ u)du. (30)

Proof. We have

E[z2] = E[

∫ +∞

0

1{z2 ≥ t}dt] =

∫ +∞

0

P(z2 ≥ t)dt.

The change of variable t = u2 gives the result.

Applying this lemma yields that It holds that

E[‖x− xi1(x)‖2] = 2

∫ +∞

0

uP(‖x− xi1(x)‖ ≥ u)du

≤ 2

∫ +∞

0

u exp(−ωd2
−dpminnu

d)du.

This last integral can be computed through the change of variables v =
ωd2

−dpminnu
d and by recognizing the expression of the Gamma function2.

Lemma 4.4. Assume that condition (A4) holds and let x ∈ [0, 1]d. Then, it
holds that

E[‖x− xi1(x)‖2] ≤ γ

n2/d
, (31)

where γ = 8Γ(2/d)

d(ωdpmin)2/d
.

We consider now the case k > 1. In this case, the approximation error
satisfies

E[App(x)2] ≤ α2E

(1

k

∑
i∈Ik

‖xi − x‖

)2


≤ α2

k
E

[∑
i∈Ik

‖xi − x‖2

]
by Jensen inequality.

(32)

The sum of squared distances is bounded thanks to an elementary (but ele-
gant) idea: for any set J of k indexes, we have∑

i∈Ik

‖xi − x‖2 ≤
∑
j∈J

‖xj − x‖2. (33)

2See https://en.wikipedia.org/wiki/Gamma_function.
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Figure 5: The red squares indicate the 3 nearest neighbors from the black dot
x. Each color represents a groupGl of observations, whereas the crossed point
is the nearest neighbor xjl to x in that group. The set of points {xj1 , . . . ,xjk}
is always farther from x on average than the set of k-nearest neighbors.
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Indeed, if we pick some index j0 not in Ik in our set J , then the sum of the
squared distances over indexes in J can always be decreased by replacing j0

by one of the indexes of Ik that is not in J . The set J is built by splitting
the set of observations x1, . . . ,xn in k different groups of size roughly n/k.
For sake of simplicity, we will assume that n/k is an integer and let Gl =
{xn(l−1)/k+1, . . . ,xnl/k} for l = 1, . . . , k, that is G1 contains the first n/k
observations, G2 the next n/k observations, and so on. We let jl be the
index of the nearest neighbor of x in the set Gl. See also Figure 5. Then,
‖x−xjl‖2 is the squared distance between a point x and its nearest neighbor
from a sample of n/k observations with distribution Px. According to Lemma
4.4, we have

E[‖x− xjl‖2] ≤ γ

(n/k)2/d
.

We define J = {j1, . . . , jk}. Equation (33) then yields

E[
∑
i∈Ik

‖xi − x‖2] ≤ E[
∑
j∈J

‖xj − x‖2]

≤
k∑

l=1

E[‖x− xjl‖2] ≤ kγ

(
k

n

)2/d

.

(34)

Putting together (27), (32) and this last equation yields the following
theorem.

Theorem 4.5 (Excess of risk of the k-nearest neighbor estimator). Assume
that conditions (A1), (A2) and (A4) hold. Then, the k-nearest neighbor
estimator f̂NN

k satisfies

E[RP (f̂NN
k )−RP (f ?

P )] ≤ 2α2γ

(
k

n

)2/d

+ 2
σ2

k
. (35)

In particular, if k = cn2/(d+2) for some constant c, we obtain a bound of the
form

E[RP (f̂NN
k )−RP (f ?

P )] ≤ Cn−2/(d+2) (36)

for some larger constant C.

For an optimal choice of k, the excess of risk of the k-NN estimator is
of the same order n−2/(d+2) as the excess of risk of the partition estimator
of Section 2. In particular, the k-NN estimator also suffers from the curse
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Figure 6: Top: the 1-NN estimator on a subsample of size n = 50. Middle:
the k-NN estimator on the full dataset for the theoretical value k = n2/3 '
200. Bottom: Expected risk for different values of k.
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of dimensionality. One can actually prove that, in a certain sense, the curse
of dimensionality is unavoidable if we only make assumptions (A1)-(A4) on
the Bayes estimator f ?

P . More structural assumptions on the function f ?
P are

needed to obtain better rates of convergence in high dimension d� 1.

Example 4.6. Eventually, we apply the k-NN estimator to the oil dataset.
First, for visualization purposes, we plot the k-NN estimator for k = 1 on
a subset of n = 50 observations, see Figure 6. Theorem 4.5 predicts that a
choice of k of order n2/3 is optimal for such a problem: in our example, this
gives a value of k ' 200, and the corresponding k-NN estimator is displayed
in Figure 6. We then split the set of observations into a train set and a test
set, while recording the excess of risk on the test set of f̂NN

k for different
values of k. It appears that k = 50 is enough to obtain a small excess of
risk. The theorem only gives a rough order of magnitude of what k should
be and not a precise value. Cross-validation should be implemented to select
the parameter k in practice.
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