
Kernel Methods

Vincent Divol

1 Linear regression with feature maps

Consider the dataset x1, . . . ,xn presented in Figure . Points inside the ball
B = {x ∈ R2, ‖x‖ ≤ 1} are assigned to −1, whereas points outside B are as-
signed to +1. No linear classifiers will then be able to obtain a good accuracy.
A first possibility is to look for more complicated classifiers (composed of in-
tersections of hyperplanes for instance). Another possibility is to ”lift” the
dataset to a higher dimensional space by considering the map Φ : R2 → R3

defined by Φ(x) = (x, ‖x‖2). The transformed dataset (Φ(x1), . . . ,Φ(xn))
is displayed in Figure . Remark that this transformed dataset, although in
higher dimension than the original dataset, is considerably simpler to clas-
sify: there now exists a linear classifier in R3 that will make exactly zero
classification errors on the training set. This toy example showcases an im-
portant concept: if a dataset has some complex structure, it may be a good
idea to look at a transformation of the dataset into a larger space. In the
larger space, the transformed dataset has hopefully a simpler structure, and
a basic method (for instance a linear regression) will then have a very good
performance. We call such a transformation Φ a feature map.

Let us consider another, less artificial example of this phenomenon. In
polynomial regression, the goal is to fit a polynomial function of degree d
to observations (x1,y1), . . . , (xn,yn), with xi ∈ R and yi ∈ R. Let Fd
be the set of polynomial functions of the form fa : x 7→

∑d
j=0 ajx

j where

a = (a0, . . . , ad) ∈ Rd+1. We are looking for the minimizer of the risk

fa ∈ Fd 7→ Rn(fa) :=
1

n

n∑
i=1

|yi − fa(xi)|2. (1)

1

Figure 1: Top: We set y = −1 for points x inside B, and y = +1 otherwise.
No linear classifier can attain good accuracy on this dataset. Bottom: In
this new representation, there exists a linear classifier with zero risk (given
by the equation z = 1).

2

Let Φd : R → Rd+1 be defined by Φd(x) = (1, x, x2, . . . , xd). Then, fa(xi) =
〈a,Φd(xi)〉. It holds that

Rn(fa) =
1

n

n∑
i=1

|yi − 〈a,Φd(xi)〉|2 =
1

n
‖Y − X̃a‖2,

where Y = (y1, . . . ,yn)> ∈ Rn and X̃ is the matrix of size n × (d + 1)
with ith row given by Φd(xi). Therefore, minimizing the empirical risk Rn

over Fd is equivalent to performing a linear regression over the transformed
dataset ((Φd(x1),y1), . . . , (Φd(xn),yn)). This is an instance of the same phe-
nomenon: when a linear technique (linear regression) does not perform well,
map the dataset in a larger space (here using Φd) and apply a linear technique
in higher dimension.

Consider now a general feature map Φ : X → RD, and the associated
linear regression problem

1

n

n∑
i=1

|yi − 〈a,Φ(xi)〉|2 =
1

n
‖Y − X̃a‖2, (2)

with Y defined as before and where X̃ is the matrix of size n × D with
rows given by Φ(xi). Assuming that the matrix X̃>X̃ is invertible, the linear
regression predictor is given by

â = (X̃>X̃)−1X̃>Y. (3)

Computing this solution requires to compute the matrix (X̃>X̃)−1. In par-
ticular, we need to inverse a matrix of size D×D.1 This is computationally
intractable if D is large (naively, it requires O(D3) operations). Therefore,
it might look like we have found a limitation of the ”lifting” approach: if
we lift our observations in a space of dimension too large, then minimizing
becomes a problem too hard to solve. However, there is a trick that allows
us to bypass this limitation. Indeed, remark that we can always assume that
a minimizer â of (2) is of the form

n∑
l=1

b̂lΦ(xl) (4)

1If the matrix X̃>X̃ is not invertible, it can be replaced by its so-called pseudo-inverse,
so this discussion applies in both regimes where D ≥ n and n ≥ D.

3

for some coefficients b̂l ∈ R. Otherwise, we may project â on the vector space
spanned by the vectors Φ(xi). The projected vector ã is such that X̃â = X̃ã
and is of the form (4). Therefore, there are always minimizers of the form
(4).

This discussion implies that it suffices to look for vectors a of the form
a =

∑n
l=1 blΦ(xl) when looking for the minimum of (2). This is equivalent

to minimizing the functional

b ∈ Rn 7→ 1

n

n∑
i=1

|yi −
n∑
l=1

bl〈Φ(xi),Φ(xl)〉|2 =
1

n
‖Y −Gb‖2, (5)

where G is the Gram matrix of size n × n, defined by Gij = 〈Φ(xi),Φ(xj)〉.
Computing G requires a number of computations that is only linear in D,
and once it is computed, the complexity of the problem will only depend on
the number of observations n. Should G be invertible, the optimal vector b̂
is given by

b̂ = G−1Y. (6)

Let us summarize what we have done so far.

• Instead of looking for a complex predictor on the dataset (x1, . . . ,xn),
we lift the observations to a higher dimensional space using a feature
map Φ : X → RD.

• In this higher dimensional space, we then look for a simple prediction
(e.g. a linear regression, a ridge regression, etc.).

• If the feature space RD is very large, then ”naive” computations be-
come intractable. However, it turns out that, once the Gram matrix
G of dot products 〈Φ(xi),Φ(xj)〉 is computed, the complexity of the
problem only depends on the number of observations n. Such a remark
is referred to as the kernel trick.

This last remark is particularly important. It shows that we never need
to actually compute the vectors Φ(xi), but only the dot products Gij =
〈Φ(xi),Φ(xj)〉. For some feature maps Φ, the dimension D is very large (or
even infinite!) whereas a very simple expression exists for the dot product,
making such an observation particularly appealing.

4

2 Reproducing Kernel Hilbert Spaces

The Gram matrix G that we introduced in the previous section is a matrix
whose entries Gij = 〈Φ(xi),Φ(xj)〉 measure the proximity between the obser-
vations xi and xj. If Gij is large, then Φ(xi) and Φ(xj) are aligned, meaning
that xi and xj are similar in some sense. On the contrary, if Gij = 0, then
Φ(xi) is orthogonal to Φ(xj) and xi and xj are very different (at least if we be-
lieve that Φ captures relevant information on the observations). This suggests
the following bold idea: what if we replace the dot product 〈Φ(xi),Φ(xj)〉
by a ”measure of similarity” k(xi,xj) between xi and xj? For instance, a
possible notion of similarity is given by the so-called Gaussian (or RBF)
kernel

kσ(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
(7)

for x, x′ ∈ Rd. Indeed, if x and x′ are close, then kσ(x, x′) = 1 (high sim-
ilarity), whereas if x and x′ are far away, then kσ(x, x′) is very small (low
similarity).

It turns out that under mild conditions on the function k, we can show
that there exists some feature map Φ with k(x, x′) = 〈Φ(x),Φ(x′)〉. In par-
ticular, the discussion of the previous section holds with this feature map Φ.
To implement a linear regression, we only need to compute the Gram matrix
G, whose entries are given by

Gij = 〈Φ(xi),Φ(xj)〉 = k(xi,xj).

Therefore, the feature map Φ never needs to be actually computed! Only the
values k(xi,xj) have to be computed.

Proving the existence of this feature map Φ requires the introduction of
some mathematical machinery. In particular, Φ will in general have outputs
living in a space of infinite dimension, that we call a Hilbert space. A Hilbert
spaceH is a vector space where we define a notion of dot product that behaves
like the classical dot product on RD. This means the following:

• Symmetry: for all x, y ∈ H, 〈x, y〉H = 〈y, x〉H.

• Linearity: for every vectors x, y, z ∈ H and λ, µ ∈ R, we have 〈x, λy +
µz〉H = λ〈x, y〉H + µ〈x, z〉H.

5

• Positive definiteness: for all x ∈ H, 〈x, x〉H ≥ 0, with equality if and
only if x = 0. We write ‖x‖H for

√
〈x, x〉H. This defines a norm on

H.

• Completeness: for every continuous linear map L : H → R, there exists
a vector h ∈ H such that L(x) = 〈h, x〉H for every x ∈ H.

Thise last property might appear mysterious. One can check that it is always
satisfied if H is a Hilbert space of finite dimension (that is H = Rd). In
infinite dimension, completeness ensures that some common mathematical
operations (e.g. taking infinite sums or projecting vectors on subspaces) are
well-defined.

Example 2.1 (For those interested in math theory). Let us show that in
a Hilbert space, infinite sums are well-defined. Let (hn)n≥0 be vectors in a
Hilbert spaceH, and assume that the infinite sum of real numbers

∑
n≥0 ‖hn‖H

is finite. Let L : H → R be defined by L(x) =
∑

n≥0〈hn, x〉. One can check
by Cauchy-Schwartz inequality that we have

|L(x)| ≤
∑
n≥0

‖hn‖H‖x‖H <∞.

Also, by properties of the sum, L is linear. Therefore, L is a continuous
linear map. By completeness, there exists a vector g ∈ H such that L(x) =
〈g, x〉 for every x. By definition, we denote this vector by

∑
n≥0 hn, and

this is our definition of the infinite sum! One can then check that with this
definition, infinite sums in the Hilbert space H satisfy the usual properties
(e.g. linearity).

An example of vector space H that is not complete is given by the
space of continuous bounded functions on [0, 1], endowed with the dot prod-

uct 〈f, g〉 =
∫ 1

0
f(t)g(t)dt. One can check that the linear map defined by

L(f) =
∫ 1/2

0
f(t)dt is continuous. However, there does not exist any contin-

uous function h with

L(f) =

∫ 1/2

0

f(t)h(t)dt

for every continuous bounded function f . Such a function h should be 1 on
[0, 1/2) and 0 on [1/2, 1], and therefore would not be a continuous bounded
function. However, the space of L2 functions on [0, 1] is complete.

6

Let us fix some set X and some function k : X × X → R. Assume that
k(x, x′) = 〈Φ(x),Φ(x′)〉H for some Hilbert space H and some feature map
Φ : X → H. Consider some points x1, . . . , xn ∈ X and numbers λ1, . . . , λn ∈
R. Then,

0 ≤ ‖
n∑
i=1

λiΦ(xi)‖2H

=
∑

1≤i,j≤n

λiλj〈Φ(xi),Φ(xj)〉H

=
∑

1≤i,j≤n

λiλjk(xi, xj).

Therefore, to be represented by a feature map, the function k should at least
satisfy that ∑

1≤i,j≤n

λiλjk(xi, xj) ≥ 0. (8)

It turns out that this condition is also sufficient.

Definition 2.2 (Kernel). Let X be a set and k : X ×X → R be a function.
We say that k is a (positive semi-definite) kernel if k is symmetric and if for
every n ∈ N, every x1, . . . , xn ∈ X and every λ1, . . . , λn ∈ R, condition (8)
is satisfied.

Alternatively, if G is the n × n matrix with entries k(xi, xj), then (8)
asserts that the matrix G is positive semi-definite, that is G < 0. We are
now in position to state our main theorem.

Theorem 2.3. Let k be a kernel on a set X . Then, there exists a Hilbert
space H and a feature map Φ : X → H such that for every x, x′ ∈ X ,

k(x, x′) = 〈Φ(x),Φ(x′)〉H. (9)

Proof. Let RX be the set of functions from X to R (which is a vector space).
Define a function Φ : X → RX by Φ(x) = k(x, ·). Consider the set H0

obtained as the set of finite sums of the form
∑n

i=1 λiΦ(xi) for elements
xi ∈ X and λi ∈ R. The set H0 is a vector space, and we can define a
dot product on it. Let f =

∑n
i=1 λiΦ(xi) and g =

∑n′

j=1 λ
′
jΦ(x′j). The dot

product is defined as

〈f, g〉H0
:=

n∑
i=1

n′∑
j=1

λiλ
′
jk(xi, x

′
j). (10)

7

One can check that this expression indeed defines a dot product and also
does not depend on the choice of expansions of f and g that we have chosen.
Furthermore, we have indeed

〈Φ(x),Φ(x′)〉H0 = k(x, x′) (11)

for any x, x′ ∈ H. However, the vector space H0 is not necessarily complete.
By using a process called completion, we can actually expand it to a larger
space H that is complete, and that will still satisfy (9).

Let us give some techniques to construct kernels.

Proposition 2.4. Let k1 and k2 be kernels on X .

1. The sum k1 + k2 is a kernel.

2. The product k1 · k2 is a kernel.

3. If X ⊂ Rd and k(x, x′) is of the form k(x−x′), then k is a kernel if its
Fourier transform

F [k](ξ) =

∫
exp(−2πi〈ξ, x〉)k(x)dx (12)

is nonnegative for every ξ ∈ Rd.

Proof. Let x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R.

1. We have∑
1≤i,j≤n

λiλj(k1(xi, xj) + k2(xi, xj))

=
∑

1≤i,j≤n

λiλjk1(xi, xj) +
∑

1≤i,j≤n

λiλjk2(xi, xj) ≥ 0.
(13)

Therefore, k1 + k2 is a kernel.

2. Note that the covariance matrix G of a random variable y ∈ Rn is
always positive semi-definite (that is we have Gij = E[y(i)y(j)] where
y = (y(1), . . . ,y(n))). Reciprocally, if G is a positive semi-definite ma-
trix, then there exists a random variable y ∈ Rn with covariance matrix
G (take for instance a Gaussian random variable). Consider a random

8

vector y1 with covariance matrix G1 = (k1(xi, xj))ij and a random vec-
tor y2 with covariance matrix G2 = (k2(xi, xj))ij, independent from y1.

Then, one can check that the vector y = (y
(1)
1 y

(1)
2 , . . . ,y

(n)
1 y

(n)
2) has co-

variance matrix G with entries (k1(xi, xj) · k2(xi, xj))ij. Therefore, G
is positive semi-definite and k1 · k2 is a kernel.

3. We use the inverse Fourier transform formula

k(x) =

∫
exp(2πi〈ξ, x〉)F [k](ξ)dξ.

Therefore,∑
1≤i,j≤n

λiλjk(xi − xj) =
∑

1≤i,j≤n

λiλj

∫
exp(2πi〈ξ, xi − xj〉)F [k](ξ)dξ

=

∫ ∑
1≤i,j≤n

λiλj exp(2πi〈ξ, xi − xj〉)F [k](ξ)dξ

=

∫
‖

n∑
i=1

λi exp(2πi〈ξ, xi〉)‖2F [k](ξ)dξ ≥ 0.

(14)

Therefore, k is a kernel.

Let us give some examples.

Example 2.5. 1. If Φ is a map from the set X to a Hilbert space H, then
k(x, x′) = 〈Φ(x),Φ(x′)〉H defines a kernel.

2. Polynomial kernels: the function k(x, x′) = 〈x, x′〉α for α ∈ N is a
kernel. This follows by induction from Proposition 2.4.2.

3. The radial basis function (RBF) kernel, or gaussian kernel: the func-

tion kσ(x, x′) = exp
(
−‖x−x

′‖2
2σ2

)
defines a kernel. Indeed, the Fourier

transform of x ∈ Rd 7→ exp
(
−‖x‖

2

2σ2

)
is given by

ξ 7→
√

2πσ2 exp(−2πσ2‖ξ‖2), (15)

which is nonnegative.

9

3 Kernel Ridge Regression

The general kernel approach can be applied to different algorithms, some that
we have already encountered (e.g. PCA or logistic regression) and some that
we have not mentionned (kernel SVM, kernel k-means, etc.). We will here
present two algorithms that can be ”kernelized”: kernel ridge regression and
kernel PCA. Recall the setting of ridge regression. Let (x1,y1), . . . , (xn,yn)
be a training sample, with xi ∈ Rd and yn ∈ R. Ridge regression consists in
minimizing the quantity

β ∈ Rd 7→ 1

n
‖Xβ −Y‖2 + λ‖β‖2, (16)

where X is the n×d matrix with rows given by the xis, Y ∈ Rn is the vector
with entries yi, ‖β‖ is the 2-norm of the vector β and λ > 0 is a penalization
parameter. This function has a unique minimizer which is given by

β̂ =
(
X>X + nλIdd

)−1
X>Y. (17)

Let us kernelize this algorithm. We now assume that the inputs x1, . . . ,xn

are elements of an arbitrary set X , and that we are given a kernel k :
X × X → R. Let Φ : X → H be an associated feature map, such that
〈Φ(x),Φ(x′)〉H = k(x, x′) for every x, x′ ∈ H. We consider predictions of the
form x 7→ 〈Φ(x), β〉H and are looking for a minimizer of the functional

β ∈ H 7→ 1

n
‖X̃β −Y‖2 + λ‖β‖2H, (18)

where X̃ is a linear operator from H to Rn, defined by

X̃β = (〈Φ(x1), β〉H, . . . , 〈Φ(xn), β〉H).

Note that in (18) there are two different norms appearing: the euclidean
norm, and the Hilbert norm in the penalization term.

Theorem 3.1 (Representer theorem). The minimum of (18) is attained at
a vector β of the form β =

∑n
i=1 aiΦ(xi) for some real numbers a1, . . . , an.

Proof. Let E be the subspace of H that is spanned by the vectors Φ(xi) and
let E⊥ be the orthogonal subspace of E. We can decompose every β ∈ H into
β1 + β2, where β1 ∈ E and β2 ∈ E⊥. Note that 〈Φ(xi), β2〉H = 0 for every xi

10

by definition of orthogonality. This implies that 〈Φ(xi), β〉H = 〈Φ(xi), β1〉H.
Also, by orthogonality, it holds that ‖β‖2H = ‖β1‖2H + ‖β2‖2H. This yields

1

n
‖X̃β −Y‖2 + λ‖β‖2H

=
1

n
‖X̃β1 −Y‖2 + λ‖β1‖2H + λ‖β2‖2H

≤ 1

n
‖X̃β1 −Y‖2 + λ‖β1‖2H.

Therefore, the minimum of (18) is attained at a point β with β2 = 0, that is
at a point β ∈ E.

Thus, to find the minimum of (18), it suffices to consider vectors β of the
form

∑n
i=1 aiΦ(xi). It is equivalent to minimize over all a = (a1, . . . , an) ∈ Rn

the quantity

1

n
‖

n∑
i=1

aiX̃Φ(xi)−Y‖2 + λ‖
n∑
i=1

aiΦ(xi)‖2H

=
1

n

∥∥∥∥∥∥∥
n∑
i=1

ai

〈Φ(x1),Φ(xi)〉
...

〈Φ(xn),Φ(xi)〉

−Y

∥∥∥∥∥∥∥
2

+ λ
∑

1≤i,j≤n

aiaj〈Φ(xi),Φ(xj)〉

=
1

n

∥∥∥∥∥∥∥
n∑
i=1

ai

k(x1,xi)
...

k(xn,xi)

−Y

∥∥∥∥∥∥∥
2

+ λ
∑

1≤i,j≤n

aiajk(xi,xj)

=
1

n
‖Ga−Y‖2 + λa>Ga,

(19)

where G is the Gram matrix with entries Gij = k(xi,xj). This last expression
is convex in the parameter a ∈ Rn and is minimized at

â = (G + nλIdn)−1 Y. (20)

Note that computing â requires the inversion of a n× n matrix, which is an
expensive operation if done naively (it requires O(n3) operations). The Gram
matrix of size n × n also has to be stored. Although some numerical tricks
exist to speed up the computations, kernel methods still are mostly
useful when the number n of observations is relatively small (say
n . 104). You should always try to implement a simpler linear method
before trying a more complex kernel approach.

11

Example 3.2. We apply kernel ridge regression to a weather forecasting prob-
lem (data from Weather Underground API). For four years, we are given the
weather day yi at the ith day of the year xi. The goal is to predict the
weather on a future day. We implement on Python a kernel ridge regression
on the data points (xi,yi) using the sklearn function KernelRidge with
λ = 1, while using the RBF kernel kσ. In Figure 2, we plot the predictions
for different values of σ. The importance of the scale parameter σ is show-
cased. Two points x, x′ are considered similar if ‖x−x′‖ . σ (that is kσ(x, x′)
is close to 1), whereas if ‖x−x′‖ & σ, then the points x and x′ are considered
different (the kernel kσ(x, x′) is small). In our example, the value σ reflects
the time scale on which we expect to have a significant temperature change.
If σ is chosen too small (say σ = 4 days), then the prediction will vary
quickly, as the model thinks that days that are one week apart could have
very different temperatures. On the opposite, if σ is too large (say σ = 200),
then we force the model to consider days that are 200 days apart as similar,
leading to serious underfitting. In practice, cross validation should be used
to tune the parameter σ.

4 Kernel Principal Component Analysis

Principal Component Analysis aims at finding the best k-dimensional sub-
space approximating a dataset of points x1, . . . ,xn in Rd. Let X be the n×d
matrix whose rows are given by the xis. The principal components v1, . . . , vk
of the dataset are found by computing the eigenvectors corresponding to the
k largest eigenvalues of the covariance matrix XX> (of size n× n). One can
then project the data points to the vector space spanned by the k principal
components to obtain a representation of the dataset in smaller dimension.

Principal Component Analysis relies on the idea that there exists a linear
subspace of low dimension that can explain well the dataset. If this is not the
case, one can still hope that a linear subspace of low dimension can be a good
approximation of a transformation Φ(x1), . . . ,Φ(xn) of the dataset. Kernel
PCA consists in applying PCA to this transformed dataset. As before, we
can consider a very general framework, where the observations x1, . . . ,xn lie
in a general set X , endowed with a kernel k : X × X → R. Let Φ : X → H
be an associated feature map.

Computing the principal components of Φ(x1), . . . ,Φ(xn) requires to com-
pute the covariance matrix of the corresponding points, which is by definition

12

Figure 2: Kernel ridge regression on the weather forecast dataset with the
RBF kernel kσ for different values of σ.

13

Figure 3: PCA (with two principal components displayed) on the dataset
(Φ(x1), . . . ,Φ(xn)). Points corresponding to emotions are in blue, while
points coresponding to countries are displayed in orange.

14

the matrix with entries 〈Φ(xi),Φ(xj)〉H = k(xi,xj). Therefore, kernel PCA
simply consists in computing the eigenvalues and eigenvectors of the Gram
matrix G with entries Gij = k(xi,xj).

Example 4.1. One of the best features of kernel methods is their versatility:
they can be applied not only to vectors, but to inputs living in any set X .
As an example, we consider the set of words X . The Word2Vec algorithm
provides a framework to learn feature maps from X to a vector space Rd

[Mikolov et al., 2013]. We use a pretrained model in the gensim Python li-
brary. This pretrained model gives a ready-to-use feature map Φ : X → Rd

with d = 25 that reflects meaningful similarities between different words. To
showcase the performance of this feature map, we use a dataset of n = 785
words either corresponding to a country (e.g. bengladesh, kenya, luxembourg)
or to an emotion (e.g. awful, cruelty, displeasure), see [Sharma, 2017]. Each
word xi is mapped to the vector Φ(xi), and we represent in Figure 3 the
projection of the vectors Φ(xi) on the plane spanned by the two first princi-
pal components of the transformed dataset (Φ(x1), . . . ,Φ(xn)). The points
corresponding to emotions and countries are clearly separated, showing that
the feature map Φ indeed captures the meaning of the words.

References

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J.
(2013). Efficient estimation of word representations in vector space. In Ben-
gio, Y. and LeCun, Y., editors, 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings.

[Sharma, 2017] Sharma, A. (2017). Sentiment package for r. https:

//github.com/abhy/sentiment.

15

https://github.com/abhy/sentiment
https://github.com/abhy/sentiment

	Linear regression with feature maps
	Reproducing Kernel Hilbert Spaces
	Kernel Ridge Regression
	Kernel Principal Component Analysis

