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1 Convexification of the 0− 1 loss

In the previous chapter, we studied in detail the properties of the empirical
risk minimizer f̂F in binary classification. This estimator is defined as the
minimizer of the functional

f ∈ F 7→ 1

n

n∑
i=1

1{yi 6= f(xi)}. (1)

This functional is highly discontinuous, and is actually piecewise constant
on each output A(z1, . . . , zn) := {f ∈ F , ∀i = 1, . . . , n, f(xi) = zi} for
z1, . . . , zn ∈ {−1, 1}. The number of such sets is exactly NF(x1, . . . ,xn).
If we believe that Sauer’s lemma is tight (and it is in many cases), then
this number is exponential in the VC dimension. Even for very simple sets,
such as the class of linear classifiers, this number will be very large even
for moderate dimension of the input space X . This computational blow up
shows the impossibility of minimizing (1) in many situations.

To overcome this problem, we make a simple remark. The set {−1, 1} is a
subset of R. Therefore, we can consider the classification task as an instance
of a regression task, choose a predictor g : X → R, and obtain a classifier by
letting f = sgn ◦ g, where sgn is the sign function (equal to +1 on [0,+∞)
and to −1 on (−∞, 0)). Minimizing the 0−1 risk of the classifier f = sgn◦g
amounts to minimizing the function

g 7→ EP [1{sgn(g(x)) 6= y}] = EP [1{g(x)y < 0}]. (2)

The loss function `(y, y′) = 1{yy′ < 0} is still not continuous, making the
minimization of the empirical risk as difficult as before. However, this loss
can be replaced by other convex losses that are similar to this one. This
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Figure 1: Examples and counterexamples of convex sets.

process is referred to as the convexification of the loss. We will come back
to this problem in Section 5 after introducing the necessary background on
convex optimization.

2 Convex functions

We start by recalling some elementary definitions.

Definition 2.1 (Convex set). A set A ⊂ Rd is convex if, given two points
x and y in A, the segment joining x and y is included in A:

∀x, y ∈ A, ∀t ∈ [0, 1], tx+ (1− t)y ∈ A. (3)

Let A ⊂ RD and let f be a function defined on A. We define the epigraph
of f as

epi(f) := {(x, t) ∈ A× R : f(x) ≥ t}. (4)

Definition 2.2 (Convex function). Let A be a convex set and let f : A→ R.
We say that f is convex if epi(f) ⊂ Rd+1 is convex. Equivalently, f is
convex if

∀x, y ∈ A, ∀t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (5)

We call A the domain of f , denoted by dom(f).
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Figure 2: The epigraph of a function f (whose graph is displayed in black).

Figure 3: Examples of convex functions.
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Figure 4: Blue: the chord joining two points of the graph of a convex function
is above the graph. Red: the graph of a function f stays above its tangent
lines.

Intuitively speaking, a function f : Rd → R is convex if, when we let a
bead rolls from a point on the graph of f , the bead always arrives to the
minimum of f (that is the point of lowest altitude). Alternatively, a function
f is convex if a chord joining two points on the graph of f is always ”above”
the graph of f .

A convex function is always continuous on the interior of its domain.
However, it may not be differentiable (take f : x 7→ |x|). If we assume that
it is differentiable, then the differential has to be monotone.

Proposition 2.3. Let f be a convex differentiable function.

• If d = 1, then f ′ is nondecreasing.

• If d ≥ 2, then, for all x, y ∈ dom(f), we have

〈∇f(x)−∇f(y), x− y〉 ≥ 0 (6)

and
f(x) ≥ f(y) + 〈∇f(y), x− y〉. (7)
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Geometrically, this means that a function is convex if its graph is always
above its tangent curves (see Figure 2).

What can we say about the second derivative of f (should it exist)? Using
the previous proposition, for d = 1, we should have f ′′ ≥ 0. The analogue of
the second derivative for d ≥ 2 is the Hessian matrix ∇2f . The good notion
of nonnegativity for symmetric matrices is given by the following condition:
for every x ∈ dom(f) and u ∈ Rd, we have u>∇2f(x)u ≥ 0. We then say that
∇2f(x) is positive semi-definite and we write ∇2f(x) < 0. Equivalently, the
eigenvalues of ∇2f(x) are nonnegative. If all the eigenvalues are larger than
some value α, then we write ∇2f(x) < αId. Likewise, if all the eigenvalues
are smaller than some number β, then we write ∇2f(x) 4 βId. These are
respectively equivalent to having u>∇2f(x)u ≥ α‖u‖2 and u>∇2f(x)u ≤
β‖u‖2 for all u ∈ Rd.

Proposition 2.4. Assume that f is twice differentiable.

• If d = 1, then f ′′ ≥ 0.

• If d ≥ 2, the Hessian matrix satisfies ∇2f(x) < 0 for every x ∈ dom(f).

Theoretical guarantees for the optimization algorithms presented in the
next sections will hold if the convex function f is sufficiently well-behaved.
A key ingredient is to assert that f is ”really convex” in a quantitative way.

Definition 2.5. A real valued convex function f is said to be α-strongly
convex if for all x, y ∈ dom(f) and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− α

2
t(1− t)‖x− y‖2. (8)

For example, a linear function f : x 7→ 〈a, x〉 is not strongly convex, as
we have the identity f(tx+(1−t)y) = tf(x)+(1−t)f(y) for such a function.

Proposition 2.6. Assume that f is twice differentiable. The following con-
ditions are equivalent.

• The function f is α-strongly convex.

• For all x, y ∈ dom(f),

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
α

2
‖x− y‖2. (9)
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• The function x 7→ f(x)− α
2
‖x‖2 is convex.

• We have ∇2f(x) < αId for every x ∈ dom(f).

Geometrically speaking, a function is α-strongly convex if its graph is
sufficiently curved at every point (more precisely, it has curvature at least 1/α
in all directions). The prototypical example of α-strongly convex function
is the function x 7→ α‖x‖2/2 (this is clear with the third characterization).
Note that strong convexity implies that f has a unique minimizer x?. Indeed,
take x far away from 0 and apply (8) to t = 1/‖x‖ and y = 0. We obtain

f(x) ≥ ‖x‖
(
f(x/‖x‖) +

α

2

1

‖x‖

(
1− 1

‖x‖

)
‖x‖2

)
. (10)

In particular, f(x) goes to infinity as ‖x‖ goes to infinity. This implies that
the infimum of f is attained on some sufficiently large ball, and by continuity
of f the infimum is attained at at least one point. Given two minimizers x1

and x2, we have, for any t ∈ (0, 1),

min f ≤ f(tx1+(1−t)x2) ≤ tmin f+(1−t) min f−α
2
t(1−t)‖x1−x2‖2. (11)

This inequality is possible only if x1 = x2, implying the uniqueness of the
minimizer.

Furthermore, α-strongly convex implies the Polyak–Lojasiewicz condition
(or PL condition). The PL condition asserts that the function f cannot grow
too fast near its minimizer x?: for all x ∈ dom(f),

f(x)− f(x?) ≤ 1

2α
‖∇f(x)‖2. (12)

A second condition that ensures good convergence properties is the reg-
ularity of the gradient of f .

Definition 2.7. Let f be a real-valued function. We say that f is β-smooth
if it is differentiable and its gradient ∇f is β-Lipschitz:

∀x, y ∈ dom(f), ‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖. (13)

Proposition 2.8. Assume that f is twice differentiable. The following con-
ditions are equivalent.
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Figure 5: The function fα,β is α-strongly convex and β-smooth.

• The function f is β-smooth.

• For all x, y ∈ dom(f),

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖x− y‖2. (14)

• We have ∇2f(x) 4 βId for every x ∈ dom(f).

Geometrically, the β-smoothness condition implies that the graph of the
function is not too curved. The prototypical example of a function that is
both α-strongly convex and β-smooth is the quadratic function

fα,β : x ∈ R2 7→ α

2
x2

1 +
β

2
x2

2. (15)

The graph of this function has an elongated bowl shape, with large width
1/α in direction x1, and small width 1/β in direction x2. The Hessian of the
function is given by

∇2fα,β(x) =

(
α 0
0 β

)
, (16)

showing that it is indeed α-strongly convex and β-smooth, see Figure 2.
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3 Gradient descent

We now investigate the problem of finding the minimum of a convex function
f . The most important algorithm to find such a minimum is the gradient
descent algorithm. The general idea is simple: to find the minimum of a
convex function, start at point x, take one step in the direction with largest
negative slope, and repeat the procedure.

Definition 3.1. Let f be a real-valued function and let x0 ∈ Rd. Let T ∈ N
be a number of steps and let (st)t=0,...,T be a sequence of step sizes. The
iterates of the gradient descent on f are defined by

xt+1 := xt − st∇f(xt) (17)

for t ∈ {0, . . . , T − 1}.

We are now in position to state the main result of this chapter: the iterates
of a gradient descent on a smooth and strongly-convex function converge
towards the minimizer of f at a fast rate.

Proposition 3.2 (Convergence of gradient descent for smooth and strongly
convex functions). Let f be a α-strongly convex and β-smooth function de-
fined on Rd. Consider the iterates (xt)t=0,...,T of the gradient descent with
constant step-size s ≤ 1/β and initialization x0. Let x? be the minimizer of
f . Then, we have

f(xT )− f(x?) ≤ (1− αs)T (f(x0)− f(x?))

≤ exp(−αsT )(f(x0)− f(x?)).
(18)

We refer to such a rate of convergence as a linear rate of convergence as
log(f(xT )− f(x?)) converges at a linear rate to −∞.

Proof. The characterization of β-smoothness (14) implies that

f(xt+1) = f(xt − s∇f(xt)) ≤ f(xt) + 〈∇f(xt),−s∇f(xt)〉+ s2β

2
‖∇f(xt)‖2

= f(xt) + s

(
sβ

2
− 1

)
‖∇f(xt)‖2.

(19)
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Furthermore, by the PL condition (12), we have

‖∇f(xt)‖2 ≥ 2α(f(xt)− f(x?)). (20)

Plugging in this inequality in (19) yields

f(xt+1)− f(x?) ≤ (f(xt)− f(x?))

(
1 + 2αs

(
sβ

2
− 1

))
. (21)

Having s ≤ 1/β implies that 2αs
(
sβ
2
− 1
)
≤ −αs. Iterating this inequality,

we obtain the conclusion.

If we choose the step size s as the largest value allowed in the proposition,
that is s = 1/β, we see that the linear rate of convergence is exactly equal
to κ−1 = α/β. The quantity κ = β/α is called the condition number of
f . This corresponds to an upper bound on the ratio between the largest
eigenvalue of the Hessian of f and its smallest. The dependence in κ in
Proposition 3.2 indicates that functions f with a large condition number κ
are harder to minimize.

More often, we want to control the number of iterations of the gradient
descent needed to find a point x with f(x)− f(x?) ≤ ε for some fixed ε > 0.
Proposition 3.2 implies that T = log(ε−1)/κ operations are needed. When
minimizing the empirical risk, we want to compute a predictor that performs
almost as well as the empirical risk minimizer f̂F . Considerations in the
previous chapter shows that one can expect the excess risk of f̂F to be at
least of order 1/

√
n. Therefore, taking ε of order 1/

√
n will most of the time

be enough in our setting. This means that roughly log(n)/κ iterations are
needed.

It is possible to relax some assumptions in the previous convergence result.
For instance, if f is not strongly convex, one still has convergence of the
iterates of the gradient descent, although at a much slower rate.

Proposition 3.3 (Convergence of gradient descent for smooth functions).
Let f be a convex β-smooth function defined on Rd. Consider the iterates
(xt)t=0,...,T of the gradient descent with constant step-size s = 1/β and ini-
tialization x0. Assume that f has a global minimizer x?. Then, we have

f(xT )− f(x?) ≤ β‖x0 − x?‖2

2T
(22)
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The dependence is not exponential in T anymore, but only polynomial.
In particular, without the strong convexity assumption, O(β/ε) iterations
are needed, a number that is polynomial (and not logarithmic) in ε−1. For
ε = 1/

√
n, this leads to O(β

√
n) iterations. The proof of Proposition 3.3

is more delicate than the previous one and we do not include it. It can be
found in [Bansal and Gupta, 2019, Theorem 3.3].

Consider a smooth convex function f that is strongly convex only on a
neighborhood of its minimizer x?. Proposition 3.3 implies that gradient de-
scent converges in a small number of steps to a point in this neighborhood.
Then, gradient descent will linearly converge to the minimizer. Therefore,
gradient descent will naturally adapt to the degree of convexity of the func-
tion, without the need to design any complicated procedure to choose the
size step: we refer to this phenomenon as gradient descent being adaptive.

4 Newton’s method

The gradient descent relies on a first order approximation of f : f(x0 + h)
locally looks like f(x0) + 〈∇f(x0), h〉, so to decrease f , we should make a
step in the direction minimizing the quantity 〈∇f(x0), h〉 (and this direction
is given by −∇f(x0)). What if we try to write a second-order approximation
of f around x0? This yields to a second-order method called Newton’s
method. We have

f(x0 + h) ≈ Pf,x0(h) = f(x0) + 〈∇f(x0), h〉+
1

2
hT∇2f(x0)h. (23)

Let us find the minimum of the quadratic function Pf,x0 . Its gradient is equal
to ∇f(x0)+∇2f(x0)h. Therefore, should the Hessian be invertible at x0 (for
instance if f is strongly convex), then the minimum of Pf,x0 is attained at
h = (∇2f(x0))−1∇f(x0).

Definition 4.1. Let f be a real-valued function and let x0 ∈ Rd. Assume
that the Hessian of f is always invertible. Let T ∈ N be a number of steps.
A step of Newton’s method is given by

xt+1 := xt − (∇2f(xt))−1∇f(xt), (24)

for t ∈ {0, . . . , T − 1}.
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To obtain convergence guarantees on Newton’s method, we will need Lip-
schitz continuity of the Hessian matrix ∇2f .

Proposition 4.2. Let f be a twice differentiable real-valued convex function
defined on Rd with ‖∇2f(x)u−∇2f(y)u‖ ≤ γ‖x− y‖‖u‖ for every x, y, u ∈
Rd. Assume further that f is α-strongly convex and β-smooth, with unique
minimizer x?. Consider the iterates (xt)t=0,...,T of the Newton’s method with
initialization x0. Then, we have

‖xt+1 − x?‖ ≤ γ

2α
‖xt − x?‖2. (25)

In particular, if ‖x0 − x?‖ ≤ α/γ, then we have

f(xT )− f(x?) ≤ βα

γ
2−2T+1

. (26)

Proof. The first step consists in rewriting the update:

xt+1 − x? = xt − x? − (∇2f(xt))−1∇f(xt)

= xt − x? − (∇2f(xt))−1

∫ 1

0

∇2f(x? + θ(xt − x?))(xt − x?)dθ

= (∇2f(xt))−1(∇2f(xt))(xt − x?)

− (∇2f(xt))−1

∫ 1

0

∇2f(x? + θ(xt − x?))(xt − x?)dθ

= (∇2f(xt))−1Gt(xt − x?),

where Gt =
∫ 1

0
(∇2f(xt)−∇2f(x? + θ(xt − x?))dθ. The operator norm of Gt

is controlled:∥∥Gt
∥∥

op
≤
∫ 1

0

∥∥∇2f(xt)−∇2f(x? + θ(xt − x?)
∥∥

op
dθ

≤ γ

∫ 1

0

(1− θ)‖xt − x?‖dθ ≤ γ

2
‖xt − x?‖.

Therefore, we obtain

‖xt+1 − x?‖ ≤
∥∥(∇2f(xt))−1

∥∥
op

γ

2
‖xt − x?‖2 ≤ γ

2α
‖xt − x?‖2. (27)
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To iterate this relation, remark that it can be written as

c‖xt+1 − x?‖ ≤ (c‖xt+1 − x?‖)2, (28)

where c = γ
2α

. This yields

c‖xT − x?‖ ≤ (c‖x0 − x?‖)2T ≤ 2−2T , (29)

where we use the condition ‖x0 − x?‖ ≤ α/γ. Eventually, β-smoothness in
x? implies that

f(xT )− f(x?) ≤ 〈∇f(x?), xT − x?〉+
β

2
‖xT − x?‖2

=
β

2
‖xT − x?‖2 ≤ βα

γ
2−2T+1

.
(30)

Newton’s method converges much faster than gradient descent. We refer
to this behavior as a quadratic convergence (because (25) states that each
iterate is quadratically closer to the minimum than the previous one). Only

O( log log ε−1

βα/γ
) iterations are needed to obtain an error ε. In the empirical risk

minimization context with n observations, this translates to roughly log log n
iterations. However, each iteration requires to compute the inverse of the
Hessian matrix ∇2f(x). In dimension d, this takes O(d3) operations using
Gauss-Jordan elimination. If d is large (and it is in many applications!), then
this cost is prohibitive. Note however that methods that are much smarter
than Gauss-Jordan elimination are used in practice to compute one step of
Newton’s method. Another drawback of Newton’s method is that it will
totally break down should f not be strongly convex. On the opposite, even
without strong convexity, we still have convergence guarantees (although
slower) for gradient descent (Proposition 3.3).

5 Logistic regression

Recall the setting of Section 1. We consider the classification problem, and
consider classifiers of the form x 7→ sgn(g(x)) where g : X → R is some
function. The loss that appears in this context is given by `01(g(x), y) =
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Figure 6: The logistic loss is a convexification of the 0− 1 loss.

1{g(x)y < 0}. Given n observations (x1,y1), . . . , (xn,yn), the empirical risk
is equal to

g 7→ Rn(g) =
1

n

n∑
i=1

`01(g(xi),yi). (31)

A powerful method to find a good classifier g consists in replacing the `01

loss by a convex loss function that, hopefully, will lead to similar behaviors.
There are a lot of different choices that can act as a surrogate for the `01 loss.
A popular one is the logistic loss

`log(y, y′) = log(1 + exp(−yy′)) = − log(σ(yy′)), (32)

where σ is the sigmoid function

σ : t 7→ 1

1 + exp(−t)
∈ [0, 1], (33)

see Figure 4. Note that σ satisfies σ(−t) = 1 − σ(t). The corresponding
empirical risk is

g 7→ R̃n(g) =
1

n

n∑
i=1

log(1 + exp(−yig(xi)))

=
1

n

n∑
i=1

zi log(1 + exp(−g(xi)))

+ (1− zi) log(1 + exp(g(xi))),

(34)
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(a)

(b)

Figure 7: (a) Empirical risk at different steps of the gradient descent in the
logistic regression model with linear classifiers. (b) Decision boundary of the
linear classifier, in the plane given by the two principal components of the
dataset.

14



where zi = 1{yi = 1}. Note that this function is convex in g1.

Link with maximum likelihood estimation

Let G be a class of real-valued functions defined on X (for instance G is the
set of linear functions). We consider the following modelization. Assume that
there exists g ∈ G such that (x,y) is obtained by sampling x according to
Px, and then letting y = 1 with probability σ(g(x)), and y = −1 otherwise.

The likelihood of a set of observations (x1,y1), . . . , (xn,yn) at g ∈ G is
given by

n∏
i=1

σ(g(xi))
zi(1− σ(g(xi)))

1−zi , (35)

where once again zi = 1{yi = 1}. The log-likelihood is equal to

n∑
i=1

zi log(σ(g(xi))) + (1− zi) log(1− σ(g(xi)))

=
n∑
i=1

zi log(σ(g(xi))) + (1− zi) log(σ(−g(xi)))

= −
n∑
i=1

zi log(1 + exp(−g(xi))) + (1− zi) log(1 + exp(g(xi)))

= −R̃n(g).

(36)

Therefore, maximizing the log-likelihood is equivalent to minimizing the em-
pirical risk R̃n. In particular, the empirical risk minimizer ĝG is a maximum
likelihood estimator! Maximum likelihood esitmators are known to satisfy
strong theoretical properties (consistency, asymptotic normality, etc.), justi-
fying the use of the logistic loss as a surrogate for the 0− 1 loss.

Example 5.1. In [Çinar et al., 2020], the authors use image processing tech-
niques to extract eight relevant geometric features from two different variety
of raisins (Kecimen and Besni). Each grain is then described by a vector in
Rd for d = 8 corresponding to those different features (area, perimeter, eccen-
tricity, etc.). We consider the set of affine classifiers Gaff containing functions

1We have defined what it means to be convex for functions defined on Rd. However,
the definition (5) can be used as a definition for a convex functionial defined on a space
of functions.
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g of the form x 7→ θ>x + b for some θ ∈ Rd and b ∈ R. Given n = 450
grains, we implement a logistic regression to classify the grains into the two
varieties. Ten steps of gradient descent are enough to reach the minimizer of
the empirical risk R̃n. We display in Figure 7 the classifier that was obtained
(in the plane given by a PCA on the dataset). The accuracy of the classifier
is tested on a test dataset, and is equal to 85%.
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