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The problem of supervised learning can be expressed in the following
way: we are given a family of inputs (x1, . . . , xn) on a set X , and associated
outputs (y1, . . . , yn) on a set Y . Given a new input x ∈ X , can we predict
what the associated output y ∈ Y will be? There are two large families of
learning problems, the case where Y is a finite set (classification task),
and the case where the ouputs yis take continuous values, typically Y = R
(regression task).

Example 0.1. .

1. Each input xi is a picture that represents an animal yi. In this case, a
picture xi is represented by the RGB value (Red, Green, Blue) of each
of its pixels, so that X = R3K , where K is a number of pixels. The set
Y is the set of animals that are depicted. This is a classification task.

2. Each input xi is a review of a movie, and yi is the rating associated
with the review. Given a new review x, the goal is to guess if the user
who wrote the review liked the movie (y is high) or disliked it (y is
low). The set of inputs X is the set of texts, whereas y ∈ Y = [0, 1]
represents a grade between 0 and 1. This is a regression task.

3. Each input xi is a patient that is described by different physiological
parameters (including e.g. sex, age, blood pressure, etc.) and a treat-
ment that was given to them, whereas yi is equal to 1 (the patient is
cured) or −1 (the patient is not cured) (Y = {−1, 1}). The goal is then
to understand what is the efficiency of different treatments for different
profiles of patients.

Before going further, there is an important question to address, concern-
ing the model assumptions made on the inputs (x1, . . . , xn) and the outputs
(y1, . . . , yn). As it is most often the case in machine learning approaches, we
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will assume that both the inputs and the ouputs are random. In particular,
it may be possible that for two inputs xi = xj that are equal, the correspond-
ing outputs yi and yj are different (this for instance makes sense in Example
(3), where different patients having the same profile, given the same treat-
ment, may experience different outcomes). We will moreover always assume
that the pairs ((x1, y1), . . . , (xn, yn)) are independent and identically dis-
tributed (i.i.d.). This is the simplest assumption, that is reasonable in a
large number of cases, although there exist relevant problems where such an
assumption is too strong (e.g. if the observations (xi, yi) arrive in a sequential
manner, it may then be the case that the law of the variable (xi, yi) depends
on the time i at which it was observed).

To distinguish between deterministic variables and random ones, we will
use a bold font to refer to the latter, that is (x,y) is random, whereas
(x, y) is deterministic. The law of the observations (xi,yi) will be denoted
by P , whereas Px is the law of the first marginal xi and Py is the law of the
second marginal yi. Remark that P is a probability measure on the space
X × Y , whereas Px is a probability measure on X and Py is a probability
measure on Y . We will write EP [f(x,y)] for the expectation of some function
f : X × Y → R with respect to P , whereas the conditional expectation of
f(x,y) given that x = x is written as EP [f(x,y)|x = x]. We will sometimes
only write E instead of EP when it is clear what the underlying law is.

1 Risks and losses

How do we measure the quality of a prediction?

The term ”predicting” is here rather vague, and the data scientist may want
to give it different meanings depending on the context. For instance, in
binary classification (Y = {−1, 1}), a possible goal is to minimize the number
of misclassifications on average. However, the two ouputs −1 and 1 may not
play a symmetrical role, and we may want to favorize predictions that make
very few mistakes when choosing −1, at the price of making more mistakes
when choosing 1. For example, in medical settings, the output y = −1 can
represent the fact that the patient x is sick and deserves further treatment,
while y = 1 means that the patient x is healthy. Then, it is a more serious
mistake to predict that y = 1 when in fact y = −1 than the opposite, and
we want to take this into account when assessing the quality of a predictor.

2



The problem is even more striking when the ouput space Y is multidi-
mensional, say Y = Rd. In that case, possible ways of measuring how a
prediction y′ = (y′1, . . . , y

′
d) is close to the output y = (y1, . . . , yd) include:

• the L∞-norm: ‖y′ − y‖∞ := maxj=1,...,d |y′j − yj|,

• the Lp-norm ‖y′ − y‖p := (
∑d

j=1 |y′j − yj|p)1/p,

• the weighted Lp-norm ‖y′− y‖p,w := (
∑d

j=1wj|y′j − yj|p)1/p, where w =
(w1, . . . , wd) is a vector of positive weights,

• the dot product y′ · y =
∑d

j=1 y
′
jyj.

There are no ”better” choices of distances among the one listed above, they
each represent a different way of measuring how two points in the output
space Y are similar. For instance, choosing the `1-norm instead of the `2-
norm indicates that we want to penalize less the fact that a huge error was
made on one of the entries y′j of the prediction, which might be a desirable
feature in some problems.

More generally, we will work with a general loss function ` on the set of
outputs.

Definition 1.1 (Loss function). A loss function is a nonnegative function
` : Y × Y → [0,+∞).

The goal is then to find a function f : X → Y such that `(f(x),y) is small
on new samples ((x′1,y

′
1), . . . , (x′n′ ,y′n′)), that we call the testing sample. We

will here always assume that the testing sample is also i.i.d. of law P 1. The
goal is then to minimize the average loss on the testing sample, that we call
the expected risk or the test error.

Definition 1.2 (Expected risk). Let P be a probability measure on X × Y
and ` be a loss function. Given a function f : X → Y, the P -risk of f is
given by

RP (f) := EP [`(y, f(x))]. (1)

1In many practical situations, the law of the testing sample is actually different from
the law P on which the predictor was trained. This situation is referred to as covariate
shift in the literature and requires the development of specific techniques. This issue will
never be addressed in these notes.
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The best prediction f ?P is the one that minimizes RP (f), and is called the
Bayes predictor. It turns out that we can give an expression of the Bayes
predictor.

Theorem 1.3 (Optimality of Bayes predictor). Let P be a probability mea-
sure on X × Y. The function f 7→ RP (f) is minimized at f ?P that is defined
by

f ?P (x) ∈ arg min
z∈Y

EP [`(y, z)|x = x]. (2)

Proof. Let f : X → Y be a function. Define the function Ψ : (x, z) ∈
X×Y 7→ EP [`(y, z)|x = x]. By definition, we have the equality Ψ(x, f ?P (x)) =
minz∈Y Ψ(x, z). By the law of total expectation, we obtain

RP (f) = EP [`(y, f(x))] = EP [Ψ(x, f(x))] ≥ EP [Ψ(x, f ?P (x))] = RP (f ?P ).
(3)

As this hold for every function f , this implies the conclusion.

Let us consider concrete examples of losses ` and associated Bayes pre-
dictors.

Example 1.4. .

• Consider the problem of binary classification (Y = {−1, 1}) with the
loss `(y, y′) = 1{y 6= y′}. Then, EP [`(y, 1)|x = x] = P (y = 1|x =
x). We call this quantity the regression function η(x). We have
EP [`(y,−1)|x = x] = 1− η(x). Therefore,

f ?P (x) =

{
1 if η(x) > 1/2,

−1 otherwise.
(4)

In other words, the Bayes predictor follows the following intuitive rule:
if the probability of observing the output y = 1 given that x = x is
larger than 1/2, then we predict 1. Otherwise, we predict −1.

• Let Y = R and let `(y, y′) = |y − y′|2. Remark that the function
z 7→ E[(a − z)2] is minimized at z = E[a]. This implies that the
function z 7→ EP [`(y, z)|x = x] = EP [|y − z|2|x = x] is minimized for
z = EP [y|x = x]. Therefore, the Bayes predictor is in this case given
by the conditional expectation

f ?P (x) = EP [y|x = x]. (5)
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2 Empirical risk

If the Bayes predictor is indeed the optimal one, it has a major drawback:
computing it requires to know what the law of the sample P is! In practice,
we only have access to the training sample ((x1,y1), . . . , (xn,yn)), and P is
unknown. We cannot therefore use the Bayes predictor, and our goal will be
to design predictors f that can be computed based on the observations, and
that will (hopefully) behave almost as well as the Bayes predictor.

A powerful method to do so consists in minimizing the empirical risk.

Definition 2.1 (Empirical risk). Let (x1,y1), . . . , (xn,yn) be a training sam-
ple from law P and ` be a loss function. The empirical risk of the sample
is given by

f 7→ Rn(f) :=
1

n

n∑
i=1

`(yi, f(xi)). (6)

The law of large number indicates that Rn(f) ' RP (f) when n is very
large. Therefore, one may expect that minimizing Rn is a good strategy to
build a predictor with small P -risk. There is however a caveat: for most losses
`, one can always find many functions f such that Rn(f) = 0, some of them
being very irregular. For instance, in a regression setting with X = Y = R
and `(y, y′) = |y − y′|, there are infinitely many functions (continuous or
discontinuous) such that f(xi) = yi, and Rn(f) = 0 for all such functions.
Such functions f will then behave badly on new observations (x,y) sampled
according to P : the risk RP (f) will be large although Rn(f) = 0.

This minimizing strategy must therefore be improved. An idea consists in
minimizing Rn over a restricted class of functions F , that will encode some
regularity that we expect the Bayes predictor to have.

Definition 2.2 (Empirical risk minimizer). Let (x1,y1), . . . , (xn,yn) be a
training sample from law P and ` be a loss function. Let F be a class of
functions from X to Y, that we also call a model. An empirical risk
minimizer f̂F is any function in F that attains the minimum

min
f∈F
Rn(f). (7)

There is a crucial element that needs to be directly mentioned: the com-
putation of the empirical risk minimizer requires the minimization of a po-
tentially complicated functional on an arbitrary set F . This problem is in
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Figure 1: Decomposition of the excess risk RP (f̂P )−R(f ?P ) into the approx-

imation error RP (f ?F)−R(f ?P ) and the estimation error RP (f̂F)−R(f ?F).

general untractable, and we will address in the next chapters how to solve it
in the case where the loss ` is convex. There are however some specific ex-
amples where no optimization procedures are required, and an explicit form
of the solution exists, as in the following example.

Example 2.3 (Linear regression). Consider the regression problem on Rd with
the quadratic loss (that is X = Rd, Y = R, and `(y, y′) = |y − y′|2). In this
setting, a popular choice is to consider the class Flin of linear predictors of
the form fθ : x 7→ θTx. The empirical risk is then given by

Rn(fθ) =
1

n

n∑
i=1

|yi − fθ(xi)|2 =
1

n

n∑
i=1

|yi − θTxi|2

=
1

n
‖Y −Xθ‖2,

where

Y =

y1
...

yn

 and X =

x1
...

xn

 .

In this case, the empirical risk minimizer f̂Flin
is given by a linear regression.

We may also further restrict the model by considering only vectors θ having
a small `2-norm (ridge regression) or a small `1-norm (lasso regression).
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Decomposition of the empirical risk: underfitting and overfit-
ting

Let us analyze the performance of an empirical risk minimizer. LetR?
P :=

minf RP (f) = RP (f ?P ). We want to understand when the risk of f̂F is not
much larger than R?

P , that is we want to bound the excess risk

RP (f̂F)−R?
P . (8)

The excess risk can be decomposed into

RP (f̂F)−R?
P = (RP (f̂F)− inf

f∈F
RP (f))︸ ︷︷ ︸

estimation error

+ ( inf
f∈F
RP (f)−R∗P )︸ ︷︷ ︸

approximation error

. (9)

Remark first that the two error terms are nonnegative.

• The approximation error inff∈F RP (f)−R∗P is a deterministic quan-
tity (it does not depend on the observations) that measures how far the
best predictor on F is from the best predictor (the Bayes predictor).
The larger F is, the smaller this error becomes.

• It is less immediate to understand how the estimation errorRP (f̂F)−
inff∈F RP (f) behaves. Assume that the infimum inff∈F RP (f) is at-
tained at some function f ?F . We can then write

RP (f̂F)− inf
f∈F
RP (f) = RP (f̂F)−RP (f ?F)

= (RP (f̂F)−Rn(f̂F)) + (Rn(f̂F)−Rn(f ?F)) + (Rn(f ?F)−RP (f ?F))

≤ (RP (f̂F)−Rn(f̂F)) + 0 + (Rn(f ?F)−RP (f ?F))

≤ sup
f∈F

(RP (f)−Rn(f)) + (Rn(f ?F)−RP (f ?F)),

(10)

where the first inequality follows from the fact that f̂F minimizes Rn

on F by definition, so that Rn(f̂F) ≤ Rn(f ?F). If we believe that this
inequality is tight (and it is in many cases), then the estimation error
is linked to the quantity supf∈F(RP (f) −Rn(f)), that is the uniform
deviation between the empirical risk Rn and its expectation RP on the
class F . This quantity increases with the size of F and decreases with
the number of observations n.
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Figure 2: Left: linear predictor f̂1 (blue), quadratic predictor f̂2 (orange) and
predictor of degree 10 (green). Right: Empirical risk Rn(f̂d) as a function
of d (in blue) and average risk of f̂d on the testing sample (in orange). As
expected, the empirical risk Rn(f̂d) is a nonincreasing function of d.

Example 2.4 (Polynomial regression). Let X = [0, 1], Y = R and ` be the
square loss. Let Fd be the set of polynomials of degree d and let f̂d := f̂Fd .

We test the performance of the estimator f̂d on the Real estate valuation data
set [Yeh and Hsu, 2018] (taken from the UCI Machine Learning Repository).
On this dataset, the goal is to predict the price y of a house based on several
features (coordinates, house age, number of nearby convenience stores, etc.).
For visualization sake, we consider a single feature x representing the house
age and compute the predictors f̂d for d ranging from 1 to 10 (see Figure 2).
We observe the two predicted regimes. For d = 1, the model is too simple and
both the empirical risk Rn(f̂1) and the risk RP (f̂1) (that is approximated by
the empirical risk on the testing sample) are large: the model is underfitting.
For d = 10, the empirical risk becomes small, but the risk RP (f̂10) is really
large: our model is too complicated and we are overfitting.

We have discovered a fundamental phenomenon: the excess risk of an
empirical risk minimizer is driven by two contrary forces. The first one is
the approximation error, that measures how far the model F is close from
”the truth”, and will be large if our model is overly simplistic, a regime that
we call underfitting. The second one is the estimation error, that measures
how the set of observations (y1, f(x1)), . . . , (yn, f(xn)) is able to capture the
behavior of the expectation EP [`(y, f(x))] over all functions F . If F is very
large, then there will typically be many different functions with very small
empirical risk (as in Example 2.4), so that the minimizer f̂P might be very
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different from f ?P . We call this regime overfitting.

3 Bound on the estimation error in binary

classification

We focus in this section on the classification task Y = {−1, 1} with the 0− 1
loss `(y, y′) = 1{y 6= y′}. Our aim is to understand how the estimation
error RP (f̂F)− inff∈F RP (f) scales with F . We first consider the case where
the set F of predictors is finite, and then consider the more delicate case of
infinite classes of predictors F by introducing the concept of VC dimension.

3.1 Finite number of predictors

Assume first that the set F = {f1, . . . , fk} is finite. The estimation error is
bounded using this general inequality.

Theorem 3.1 (Maximal inequality). Let z1, . . . , zk be real valued random
variables such that there exists a constant σ > 0 with E[eλzj ] ≤ eλ

2σ2/2 for
every λ > 0. Then,

E[ max
j=1,...,k

zj] ≤ σ
√

2 log k. (11)

Proof. A first (naive) idea to bound the maximum of a collection of numbers
(aj) consists in using that

max
j=1,...,k

aj ≤
k∑
j=1

aj. (12)

Of course, this bound is often very bad. However, using (12) makes sense if
the maximum of the ajs (say aj0) is much larger than the other ones: in that
case, the sum is roughly equal to the max.

We will enforce this situation by replacing each aj by exp(λaj) for some
parameter λ > 0. If λ is very large, then indeed exp(λaj0) is much larger
than the other values exp(λaj), and therefore the bound

max
j=1,...,k

eλaj ≤
k∑
j=1

eλaj (13)
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becomes a much more reasonable one. Another way of writing this equation
is the following:

max
j=1...k

aj ≤
1

λ
log

(
k∑
j=1

eλaj

)
. (14)

Let us now fix aj = zj. We obtain

E[ max
j=1...k

zj] ≤ E

[
1

λ
log

(
k∑
j=1

eλzj

)]
. (15)

We are now in position to use Jensen’s inequality.

Lemma 3.2 (Jensen’s inequality). Let x be a real valued random variable
and ϕ : R→ R be a convex function. Then,

ϕ(E[x]) ≤ E[ϕ(x)]. (16)

Applying Jensen’s inequality to ϕ = exp, we obtain

E[ max
j=1...k

zj] ≤
1

λ
log

(
E

[
k∑
j=1

eλzj

])
. (17)

The assumption E[eλzj ] ≤ eλ
2σ2/2 yields

E[ max
j=1...k

zj] ≤
log k

λ
+
λσ2

2
. (18)

We choose λ > 0 to minimize this expression: the optimal value is λ =√
2 log k/σ and we obtain the final bound.

Let us now turn to the quantity E[RP (f̂F) − inff∈F RP (f)]. According
to the inequality (10), it is enough to bound

E
[
sup
f∈F

(RP (f)−Rn(f)) + (Rn(f ?F)−RP (f ?F))

]
= E[ max

j=1,...,k
(RP (fj)−Rn(fj))] + E

[
1

n

n∑
i=1

1{yi 6= f ?P (xi)}

]
− P(y 6= f ?P (x))

= E[ max
j=1,...,k

(RP (fj)−Rn(fj))].
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Let us apply the maximal inequality to the random variables zj = RP (fj)−
Rn(fj) for j = 1, . . . , k. We have

RP (fj)−Rn(fj) = P(fj(x) = y)− 1

n

n∑
i=1

1{fj(xi) = yi}. (19)

The independence of the observations (xi,yi) yields

E[eλ(RP (fj)−Rn(fj))] =
n∏
i=1

E[e
λ
n
(P(fj(x)=y)−1{fj(xi)=yi})]. (20)

Let pj = P(fj(xi) = yi). Then,

E[e
λ
n
(pj−1{fj(xi)=yi})] = pje

−λ
n
(1−pj) + (1− pj)e

λ
n
pj . (21)

The maximum of this quantity is obtained at pj = 1/2, so that

E[e
λ
n
(pj−1{fj(xi)=yi})] ≤ e

λ
n + e−

λ
n

2
≤ eλ

2/(2n2), (22)

where we use the standard inequality eλ + e−λ ≤ 2eλ
2/2. Therefore, the

random variable zjs satisfy the condition of Theorem 3.1 with σ = 1/
√
n.

We thus obtain the following result.

Theorem 3.3 (Error bound in expectation on the estimation error in binary
classification: finite case). Assume that F contains k elements and that ` is
the 0− 1 loss. Then

E[RP (f̂F)− inf
f∈F
RP (f)] ≤ E[sup

f∈F
(RP (f)−Rn(f))] ≤

√
2 log k

n
. (23)

By the central limit theorem, we expect the fluctuations of Rn(f) around
RP (f) to be of order 1/

√
n. Theorem 3.3 asserts that the uniform deviations

of Rn(f) over a family of k functions f are also of order 1/
√
n.

3.2 Vapnik-Chervonenkis dimension

The left hand side of Theorem 3.3 diverges as the size k of the class F
of predictors grow (although at a slow

√
log k rate). Does this mean that
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Figure 3: Given n points x1, . . . , xn in Rd, the number NF0(x1, . . . , xn) of
classifications using a classifier f ∈ F0 is at most n + 1. Indeed, if we order
the points such that their first coordinates are in increasing order x

(1)
1 ≤

x
(1)
2 ≤ · · · ≤ x

(1)
n , then choosing a classifier in F0 amounts to choosing the

largest index which will be classified as −1, and there are n+ 1 such indices.

everything is hopeless when F is infinite and that we should stick with a
finite set F in practice? Hopefully not! Indeed, in many situations, one
chooses F to be some infinite ”well-behaved” family. This is for instance
the case for linear regression, where the set of predictors is the (infinite)
set Flin = {x 7→ xT θ, θ ∈ Rd}. For the classification problem, it turns
out the size of the set F is not a good measure of its complexity. Rather,
the ”effective” size of a set F is measured by the number of classifications
(f(x1), . . . , f(xn)) over all f ∈ F .

Let us first remark that, even if F is infinite, then the set of possible
classifications CF(x1, . . . ,xn) := {(f(x1), . . . , f(xn)), f ∈ F} is always finite,
and of size at most 2n (each f(xi) is equal to ±1). Using a technical tool
called symmetrization, one can show that one can indeed replace the size of
F in Theorem 3.3 by the size of the classification set CF(x1, . . . ,xn).

Lemma 3.4. Let NF(x1, . . . ,xn) be the size of the set CF(x1, . . . ,xn). Then,

E[sup
f∈F

(RP (f)−Rn(f))] ≤ 2E

[√
2 logNF(x1, . . . ,xn)

n

]
. (24)
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For many different examples, the quantityNF(x1, . . . ,xn) is much smaller
than the maximum possible value 2n, making inequality (24) non trivial.
Consider for instance the set F0 = {x 7→ 1{x(1) ≥ a}, a ∈ R}. Then,
the set CF0(x1, . . . ,xn) contains at most n + 1 elements (see Figure 3). We
therefore directly obtain a bound of order

√
log n/n in this case, which is

comparable to the bound that we obtained in the previous section (Theorem
3.3), although F0 is infinite.

For general sets F , bounding directly NF(x1, . . . ,xn) is delicate, and
there are even certain values of n for which finding a good bound is hopeless.
Indeed, assume that for every x1, . . . , xn ∈ X and every y1, . . . , yn ∈ {0, 1},
one can find a function f ∈ F with f(xi) = yi for i = 1, . . . , n. Then, the
empirical risk Rn(f̂F) = minf∈F

1
n

∑n
i=1 1{f(xi) 6= yi} is always equal to 0.

We are exactly in the overfitting regime where we expect the estimation error
to be large. In that case, we have NF(x1, . . . ,xn) = 2n, making inequality
(24) vacuous.

Definition 3.5 (Vapnik-Chervonenkis dimension). Let F be a set of func-
tions from X to {−1, 1}. The Vapnik-Chervonenkis dimension VC(F)
of F is defined as the largest number n such that there exists a configura-
tion x1, . . . , xn ∈ X such that for every possible classifications y1, . . . , yn ∈
{−1, 1}, there exists f ∈ F with f(xi) = yi for i = 1, . . . , n. We set
VC(F) = +∞ if this condition holds for every n ∈ N.

According to the previous discussion, for n ≤ VC(F), the set F is overfit-
ting and there is no hope in bounding the estimation error. However, should
n� VC(F), then the next lemma asserts that NF(x1, . . . , xn) scales at most
polynomially with n. In particular, it is much smaller than 2n!

Lemma 3.6 (Sauer’s lemma). Let F be a set with finite VC dimension. Let
n > 2VC(F). Then, for every x1, . . . , xn ∈ X , we have

logNF(x1, . . . , xn) ≤ VC(F) log

(
en

VC(F)

)
. (25)

Putting Lemma 3.4 and Lemma 3.6 together, we obtain the following
result.

Theorem 3.7 (Error bound in expectation on the estimation error in binary
classification: with VC dimension). Assume that F has a finite VC dimension
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VC(F) and that ` is the 0− 1 loss. Then, for n ≥ 2VC(F),

E[RP (f̂F)− inf
f∈F
RP (f)] ≤ E[sup

f∈F
(RP (f)−Rn(f))]

≤ 2

√
2VC(F)

n
log

(
en

VC(F)

)
.

(26)

We conclude by giving some properties of the VC dimension.

Proposition 3.8. Let F be a set of functions from X to {−1, 1}.

1. If F is of size k, then VC(F) ≤ log2(k).

2. It X = Rd and F is the set of linear classifiers (that is f ∈ F is of
the form f(x) = 1 if x belongs to some halfspace H and −1 otherwise),
then VC(F) = d+ 1.

3. Let s ≥ 1 be an integer and let Fs be the set of classifiers of the form
maxj=1,...,s fj for some functions fjs in F . Then,

VC(Fs) ≤ VC(F)(2s log2(3s)). (27)

Remark 3.9. So far, we have only given tools to bound the estimation error
RP (f̂F)−inff∈F RP (f). What about the approximation error inff∈F RP (f)−
R∗P ? This quantity will depend on the regularity of the Bayes predictor f ?P .
Assume for the sake of simplicity that x is uniform on the cube X = [0, 1]d

and y = f0(x) for some function f0 : X → {−1, 1} (that is there is no noise)
for d ≥ 2. Then, the Bayes risk R?

P is equal to 0 and the approximation error
is equal to

inf
f∈F

P(f(x) 6= f0(x)). (28)

This probability represents the area of the cube where f and f0 differ. Let
us consider a toy example to get some intuition. Assume that f0 is equal
to 1 on some smooth convex set of volume 1 and −1 outside. Consider the
model Fs consisting of intersections of s halfplanes, that is every f ∈ Fs is
of the form

f(x) =

{
1 if x ∈

⋂s
j=1Hj

−1 otherwise,
(29)
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Figure 4: Let F be the set of linear classifier in R2. There exists a set of three
points, such that linear classifiers can output all possible classifications (top).
However, for all configurations of four points, there exists a classification that
cannot be realized by a linear classifier (bottom). Therefore, VC(F) = 3.

where H1, . . . , Hs are s halfplanes. It is then known [Bronstein, 2008] that
the approximation error is bounded by cds

−2/(d−1) for some constant cd. As
expected, this quantity decreases as s gets larger. Using Theorem 3.7 and
Proposition 3.8, we obtain the following bound on the excess risk (for n larger
than s):

E[RP (f̂F)−R?
P ] ≤ c′d

√
s log(s) log(n)

n
+ cds

−2/(d−1), (30)

where c′d is some positive constant. Letting s = n(d−1)/(d+3), we obtain a
bound of order

E[RP (f̂F)−R?
P ] ≤ c′′d log(n)n−2/(d+3) (31)

for some other constant c′′d. Note that this rate of convergence is extremely
slow for large d: we refer to this phenomenon as the curse of dimension-
ality.
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Appendix

Symmetrization

We provide here a proof of Lemma 3.4. This is a delicate proof, that uses a
key technical tool used symmetrization. We call a random sign e that is equal
to +1 with probability 1/2 and −1 with probability 1/2 as a Rademacher
random variable.

Lemma 3.10. Let T be a set and let a1, . . . , an be i.i.d. random variables
in RT : each ai is a function from T to R. We assume that for every t ∈ T ,
E[ai(t)] is finite. Let e1, . . . , en be n i.i.d. Rademacher random variables,
independent from the ais. We have

E[sup
t∈T

1

n

n∑
i=1

(ai(t)− E[ai(t)])] ≤ 2 · E[sup
t∈T

n∑
i=1

eiai(t)]. (32)

Proof. We introduce a′1, . . . , a
′
n an independent copy from a1, . . . , an. The

random vectors ai−a′i are independent and symmetric, such that a′i−ai has
the same law as ai − a′i. One can check that ai − a′i has the same law as
ei(ai − a′i). Therefore,

E[sup
t∈T

1

n

n∑
i=1

(ai(t)− E[ai(t)])] = E[sup
t∈T

1

n

n∑
i=1

(ai(t)− E[a′i(t)])]

= E[sup
t∈T

E[
1

n

n∑
i=1

(ai(t)− a′i(t))|a1, . . . , an])].
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The function z 7→ supt∈t z(t) is convex. Therefore, by Jensen’s inequality,

E[sup
t∈T

1

n

n∑
i=1

(ai(t)− E[ai(t)])] ≤ E[E[sup
t∈T

1

n

n∑
i=1

(ai(t)− a′i(t))]]

= E[sup
t∈T

1

n

n∑
i=1

(ai(t)− a′i(t))]

= E[sup
t∈T

1

n

n∑
i=1

ei(ai(t)− a′i(t))]

= E[sup
t∈T

1

n

n∑
i=1

eiai(t)] + E[sup
t∈T

1

n

n∑
i=1

−eia
′
i(t))]

= 2 · E[sup
t∈T

1

n

n∑
i=1

eiai(t)].

We apply this general inequality with T = F to the random variables
ai(f) = `01(f(xi),yi) = 1{f(xi) 6= yi} to obtain

E[sup
f∈F

(RP (f)−Rn(f))] ≤ 2 · E[sup
f∈F

1

n

n∑
i=1

ei1{f(xi) 6= yi}]

= 2 · E[ sup
u∈CF (x1,...,xn)

1

n

n∑
i=1

ei1{ui 6= yi}],
(33)

where u = (u1, . . . , un) is any element of CF(x1, . . . ,xn), the set of classifica-
tions of x1, . . . ,xn using a classifier f ∈ F . Conditionally on the observations
(x1,y1), . . . , (xn,yn), the random variables 1

n

∑n
i=1 ei1{ui 6= yi} satisfy the

assumptions of Theorem 3.1 with σ = 1/
√
n. Also, there are NF(x1, . . . ,xn)

such random variables. Then, by applying Theorem 3.1 conditionally on the
observations (x1,y1), . . . , (xn,yn), we obtain that

E[sup
f∈F

(RP (f)−Rn(f))] ≤ 2 · E

[√
2 logNF(x1, . . . ,xn)

n

]
, (34)

that is exactly Lemma 3.4.
To summarize, we have used symmetrization to replace a supremum over

an infinite number of random variables (each random variableRP (f)−Rn(f)
are different because RP (f) is a priori different for every function f ∈ F) to
a supremum over only a finite number of CF(x1, . . . ,xn) random variables.
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